首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present paper we report structural and photoluminescence (PL) results from samples obtained by Si implantation into stoichiometric silicon nitride (Si3N4) films. The Si excess was introduced in the matrix by 170 keV Si implantation performed at different temperatures with a fluence of Φ=1×1017 Si/cm2. The annealing temperature was varied between 350 and 900 °C in order to form the Si precipitates. PL measurements, with a 488 nm Ar laser as an excitation source, show two superimposed broad PL bands centered around 760 and 900 nm. The maximum PL yield is achieved for the samples annealed at 475 °C. Transmission electron microscopy (TEM) measurements show the formation of amorphous nanoclusters and their evolution with the annealing temperature.  相似文献   

2.
We have studied the influence of the hydrostatic pressure during annealing on the intensity of the visible photoluminescence (PL) from thermally grown SiO2 films irradiated with Si+ ions. Post-implantation anneals have been carried out in an Ar ambient at temperatures Ta of 400°C and 450°C for 10 h and 1130°C for 5 h at hydrostatic pressures of 1 bar–15 kbar. It has been found that the intensity of the 360, 460 and 600 nm PL peaks increases with rising hydrostatic pressure during low-temperature annealing. The intensity of the short-wavelength PL under conditions of hydrostatic pressure continues to rise even at Ta=1130°C. Increasing Ta leads to a shift in the PL spectra towards the ultraviolet range. The results obtained have been interpreted in terms of enhanced, pressure-mediated formation of ≡Si–Si≡ centres and small Si clusters within metastable regions of the ion-implanted SiO2.  相似文献   

3.
The influence of P ion doping on the photoluminescence (PL) of the system of nanocrystals in SiO2 matrix (SiO2:Si) both without annealing and after annealing at various temperatures (provided before and after additional P implantation) is investigated. The Si and P implantation was carried out with ion energies of 150 keV and doses ΦSi=1017 cm−2 and ΦP=(0.1–300)×1014 cm−2 (current density j3 μAcm−2). The system after Si implantation was formed at 1000°C and 1100°C (2 h). For the case of SiO2:Si system as-implanted by P, the intensity of PL was drastically quenched, but partially retained. As for the step-by-step annealing (at progressively increased temperatures) carried out after P implantation, the sign and degree of doping effect change with annealing temperature. The possible mechanisms of these features are discussed.  相似文献   

4.
Photoluminescence from Si implanted silica is studied as a function of Si fluence and Si concentration profile in order to assess the effect of particle size and size distribution on emission spectra. Peaked (skewed Gaussian) concentration profiles were produced by implanting with 400 keV Si ions and uniform Si profiles were produced by a multi-energy implant sequences. Both as-implanted and annealed samples are shown to exhibit a distinct maximum in the emission intensity as a function of ion fluence, with the intensity increasing with fluence up to the maximum and then decreasing at higher fluences. Samples with a uniform Si profile are also shown to produce emission which is significantly red-shifted relative to that of samples with a peaked Si profile. This is consistent with the fact that such samples are expected to have a narrower particle size distribution (i.e. a greater fraction of larger particles).  相似文献   

5.
We have studied photoluminescence (PL) spectrum and dynamics of Cu- and Al-doped ZnS (ZnS:Cu,Al) nanocrystals fabricated by sequential implantation of Zn+, S+, Cu+, and Al+ ions into Al2O3 matrices. These samples exhibit intense green PL under UV light excitation. The space- and time-resolved PL measurements show that the broad green PL is due to the donor–acceptor (DA) pair luminescence of single ZnS:Cu,Al nanocrystals.  相似文献   

6.
Silicon ions were implanted into the films of silicon oxide obtained by thermal oxidation of silicon wafers in a damp oxygen. Accumulation of the implantation dose was performed either in one step or cyclically in step-by-step mode, and after each stage of implantation the samples were annealed in a dry nitrogen. The second series of the samples differed from the first one by the formation of SiO2 matrix that included additional annealing in the air at 1100 °C for 3 h before ion implantation. X-ray absorption near edge structure (XANES) was obtained with the use of synchrotron radiation. Two absorption edges were observed in all of Si L2,3-spectra. One of them is related to elementary silicon while the other one-to silicon in SiO2. The fine structure of the first one indicates the formation of nanocrystalline silicon nc-Si in SiO2 matrix. Its atomic and electron structure depends on the technology of formation. For both series of samples, a cyclical accumulation of the total dose Φ=1017 cm−2 (for the total time of annealing—2 h) resulted in the appearance of more distinct structure in the range of absorption edge for the elementary silicon as compared with the case of single-step accumulation dose. In the more “dense” oxide of the samples from the second series, the probability of formation of silicon nanocrystals in a thin near-surface region of the implanted layer was reduced. These results can be interpreted with the account of the previously obtained photoluminescence, Raman scattering and electron microscopy data for these samples.  相似文献   

7.
Si particles embedded in an SiO2 matrix were obtained by co-sputtering of Si and SiO2 at various deposition temperatures Td (200–700°C) and annealing at different temperatures Ta (900–1100°C). The systems were characterized by X-ray photoelectron, Raman scattering, infrared absorption and photoluminescence spectroscopy techniques. The results show that the photoluminescence efficiency is strongly dependent on the degree of phase separation between the Si nanocrystals and the SiO2 matrix. This is likely connected with the Si/SiO2 interface characteristics, together with the features indicating the involvement of quantum confinement.  相似文献   

8.
Photoluminescence spectroscopy, Fourier transform infrared spectroscopy, X-ray reflectometry and high resolution electron microscopy have been used to interpret the photoluminescence properties of annealed (3/19 nm) Si/SiO2 multilayers grown by reactive magnetron sputtering. The multilayers show an emission in the visible and near-infrared range after heat treatment from 900°C which tends to decrease from 1200°C. Three different origins for the photoluminescence activity have been found. An anneal temperature of 1200°C is necessary to optimise the silicon crystallisation within the silicon sublayers.  相似文献   

9.
57Fe and 12C ions were implanted at room temperature into single crystal SiO2 with energies yielding approximately the same calculated ranges. The energies were 60 and 20 keV, respectively for 57Fe and 12C and their corresponding doses were 5 × 1016 and 2 × 1017 at/cm2. The cementite Fe3C was formed after annealing at 650°C with a size of about 7 nm. Magnetic coercive forces of 900 and 800 Oe were obtained at RT and 80 K, respectively. An explanation for such a strong coercivity is suggested.  相似文献   

10.
An innovative fabrication technique for the nanometer-sized SiGe/Si heterostructure was developed in this study. Ge was induced in Si substrate by two-step ion implantation. The spherical SiGe nanoclusters are self-assembled in the Si substrate by subsequent rapid thermal annealing at 1,100 °C. The diameter of the spherical SiGe nanoclusters is 5–7 nm. Visible photoluminescence from this nanometer-sized SiGe/Si heterostructure at room temperature was investigated. We found three peak energies of visible luminescence spectra at 1.97, 2.13, and 2.16 eV, respectively. The luminescence intensity depends on the number of the nanoclusters and will be decreased because of the micro-defects around the heterostructure, which is discussed in detail.  相似文献   

11.
Kapil Dev  E. G. Seebauer   《Surface science》2004,550(1-3):185-191
Experiments employing photoreflectance spectroscopy have uncovered band bending due to electrically active defects at the Si(1 1 1)–SiO2 interface after sub-keV Ar+ ion bombardment. The band bending of about 0.5 eV resembles that for Si(1 0 0)–SiO2, and both interfaces exhibit two kinetic regimes for the evolution of band bending upon annealing due to defects healing. The healing takes place about an order of magnitude more quickly at the (1 1 1) interface, however, probably because of less fully saturated bonding and higher compressive stress.  相似文献   

12.
We reported on planar waveguides in stoichiometric lithium niobate fabricated by 4.5 MeV oxygen ion implantation with a dose of 6 × 1014 ions/cm2 at room temperature. After ion implantation, these samples were annealed at 240 °C, 260 °C, and 300 °C for 30 min. We investigated annealing effect on the guiding modes and near-field images in the waveguides by prism-coupling method and end-face coupling method respectively. We found that for the extraordinary refractive index a positive alternation occurred in the near-surface region while a negative alternation happened at the end of ion track. Moreover, we measured the transmission spectra for the pure sample and implanted samples before and after annealed at different temperatures, and we observed an absorption peak at ∼480 nm (2.6 eV) in all of these SLN samples.  相似文献   

13.
Dense-packed CdSe nanoclusters synthesized by sequential ion implantation of Cd+ and Se+ in thermally grown SiO2 are subjected to high electric field strengths in a metal oxide semiconductor (MOS) structure. The nanocrystal-containing device shows efficient CdSe band-edge photoluminescence (PL) when excited by a cw-HeCd laser operating at a wavelength of 442 nm at room temperature. An effective PL quenching and enhancement has been observed. Depth-resolved μ-PL measurements reveal an exponential decrease, which is depth-correlated with a layer of nanoparticles near the surface, whereas the optical non-linearity of the PL increases in parallel. The PL spectra and particle size distribution suggest an energy transfer from the nanoscopic to adjacent large particles. It can be concluded from these results that charge injection into the near-surface region of the nanocluster/SiO2 system might be the reason for the asymmetric and hysteretic electro-optic response.  相似文献   

14.
采用强流金属蒸汽真空弧(MEVVA)离子源注入机,先将Si大束流注入热氧化SiO2/单晶硅,直接形成镶嵌在SiO2中的纳米晶Si,再小束流注入Er。Er离子在掺杂层中的浓度可达10^21cm^-3量级,大大地提高了作为孤立发光中心的Er^3 浓度。在77K和室温下,观察到了Er^3 的1.54цm特征发射。  相似文献   

15.
Single-mode waveguides in LiNbO3 are demonstrated by use of prism coupling method. The waveguides are fabricated by three different energies and single energy C2+ implantations at the equal total doses, respectively. Dark modes and propagation loss are measured by use of prism coupling and moving fiber methods, respectively. Damages produced by implantation are measured by RBS/channeling technique. The waveguide structures are investigated in two different implantation cases. The results of analysis indicate that the heavy ion-implanted waveguides are still defined by synergetic characteristics from both the raised-index region and the low-index barrier. The broadened barrier from multienergy implantation is demonstrated to play a significant role in reducing propagation loss.  相似文献   

16.
The interaction between MgCl2 and SiO2 was investigated by X-ray photoelectron spectroscopy (XPS), ion scattering spectroscopy (ISS) and contact potential difference (CPD) measurements. A thin SiO2 layer was grown for this purpose on a Si(1 0 0) wafer and MgCl2 was applied on this support at room temperature by evaporation under UHV conditions. It was found that magnesium chloride is deposited molecularly on the SiO2 substrate, growing in layers and covering uniformly the oxide surface. The interaction with the substrate is initially very weak and limited to the interfacial layer. Above 623 K, most of the molecular MgCl2 is re-evaporated and the interfacial interaction becomes stronger, as Mg-Cl bonds in the remaining sub-monolayer chloride break and Cl atoms desorb. This leaves on the surface sub-stoichiometric MgClx, which interacts with oxygen atoms from the substrate to form a complex surface species. At 973 K all Cl atoms desorb and Mg remains on the surface in the form of an oxide.  相似文献   

17.
Nanoscaled SiGe particles (NPs) are formed by ions implantation and annealing treatment methods. For any sample, the total dose of Si and Ge dopants is 3×1016 cm−2. Strong photoluminescence (PL) peaks centered around red emission region are observed. This PL peak red shifts from 653 nm–695 nm with the increase of Ge-doping dose, which is ascribed to the quantum confinement effect. The PL lifetime spectra exhibit a stretched exponential decay with characteristic decay time τ varying from 50.2–23.1 μs and dispersion factor β in the range of 0.67–0.86.  相似文献   

18.
In this paper we explore the electroluminescence (EL) properties of thermally grown 350 nm thick SiO2 layers co-implanted with Si+ and C+ ions. The implanted fluences were chosen in such a way that peak concentrations of excess Si and C of 5–10 at% were achieved. The devices show a broad photoluminescence (PL) between 2.0 and 3.2 eV with a main peak around 2.7 eV. The broad EL spectra show additional peaks around 3.3 eV and between 2.1 and 2.5 eV which are decreased with increasing Si/C concentration. The shape of the EL spectra does not change with increasing injection currents which implies that various types of defects occur for the different concentrations. The device stability is improved in comparison to Ge or Sn implanted oxide layers.  相似文献   

19.
Angle resolved photoemission studies of the Si 2p and Si 1s core levels and the Si KL2,3L2,3 Auger transitions from SiO2/SiC samples are reported. Most samples investigated were grown in situ on initially clean and well ordered √3×√3 reconstructed 4H-SiC(0 0 0 1) surfaces but some samples were grown ex situ using a standard dry oxidation procedure. The results presented cover samples with total oxide thicknesses from about 5 to 118 Å. The angle resolved data show that two oxidation states only, Si+1 and Si+4, are required to explain and model recorded Si 2p, Si 1s and Si KLL spectra.The intensity variations observed in the core level components versus electron emission angle are found to be well described by a layer attenuation model for all samples when assuming a sub-oxide (Si2O) at the interface with a thickness ranging from 2.5 to 4 Å. We conclude that the sub-oxide is located at the interface and that the thickness of this layer does not increase much when the total oxide thickness is increased from about 5 to 118 Å.The SiO2 chemical shift is found to be larger in the Si 1s level than in the Si 2p level and to depend on the thickness of the oxide layer. The SiO2 shift is found to be fairly constant for oxides less than about 10 Å thick, to increase by 0.5 eV when increasing the oxide thickness to around 25 Å and then to be fairly constant for thicker oxides. An even more pronounced dependence is observed in the Si KLL transitions where a relative energy shift of 0.9 eV is determined.The relative final state relaxation energy ΔR(2p) is determined from the modified Auger parameter. This yields a value of ΔR(2p)=−1.7 eV and implies, for SiO2/SiC, a “true” chemical shift in the Si 2p level of only ≈0.4 eV for oxide layers of up to 10 Å thick.  相似文献   

20.
Thermal oxides were implanted with common dopants (As, P) and inert elements (Ar). After different post-implantation annealing treatments the hole trapping in the samples was characterized by means of avalanche injection. Hole capture is reduced by anneal in an oxidizing ambient, but less for As and P than for Ar samples. It is shown that defect centers are produced by chemical interaction between network formers and the damaged oxide structure and in addition by recoil damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号