首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The relative structural and dynamic properties of hydrogen-bonding between Pyrimidine (Pmd) + H2O and Pmd + D2O, and 4-Methylpyrimidine (Mpmd) + H2O and Mpmd + D2O are investigated experimentally by linear Raman spectroscopy using Raman difference spectroscopic (RDS) technique. The focus has been given to the ring breathing mode (ν1). The effect of methylation on the Pmd ring has been studied in terms of wavenumber shift (Δν), peak-position and linewidth variation with mole fraction of the solvent. The wavenumber shift has been calculated by assuming the Voigt profile of the Raman band. In order to explain our experimental results, we have optimized single Pmd and 4Mpmd molecules and their various complexes with H2O and D2O in the stoichiometric ratio of 1:1, 1:2, 1:3 and 1:4 by employing DFT/B3LYP functional with 6-311+G(d,p) basis set using Gaussian software. There is a good correspondence between experimental and theoretical results. Our result reveals that with RDS technique, Δν of a band up to 1/100th of the FWHM can be measured precisely.  相似文献   

2.
《Fluid Phase Equilibria》2005,233(2):190-193
Isothermal phase equilibrium (pressure–composition in the gas phase) for the ternary system of H2 + CO2 + H2O has been investigated in the presence of gas hydrate phase. Three-phase equilibrium pressure increases with the H2 composition of gas phase. The Raman spectra suggest that H2 is not enclathrated in the hydrate-cages and behaves only like the diluent gas toward the formation of CO2 hydrate. This fact is also supported by the thermodynamic analysis using Soave–Redlich–Kwong equation of state.  相似文献   

3.
《Vibrational Spectroscopy》2007,43(2):297-305
The new zinc(II) coordination polymer catena-poly[{aqua(η2-indole-3-carboxylato-O,O′)zinc}-μ-indole-3-carboxylato-O:O′], [Zn(I3CA)2(H2O)]n [Zn(I3CA)2(H2O)]n has been synthesized and characterized using infrared and Raman spectroscopy and X-ray single-crystal diffraction analysis. The crystals are monoclinic, space group Cc, with a = 33.319(7), b = 5.985(1), c = 8.291(2) Å, V = 1653.1(6) Å3 and z = 4. Each zinc centre is five-coordinated by the bidentate chelating indole-3-carboxylato, one oxygen atom bridging indole-3-carboxylato, water molecule and one oxygen atom bridging indole-3-carboxylato from an adjacent [Zn(I3CA)2(H2O)] unit. The Zn–O distances of 1.978(4), 1.987(3), 1.977(4), 1.983(3) and 2.519(4) Å, are typical for distances of such complexes. The infrared and Raman spectroscopic data of [Zn(I3CA)2(H2O)]n in the solid state are supported by X-ray analysis. The theoretical wavenumbers, infrared intensities and Raman scattering activities have been calculated by the density functional methods (B3LYP and mPW1PW) with the D95V**/LanL2DZ and 6-311++G(d,p)/LanL2DZ basis sets. The theoretical wavenumbers, infrared intensities and Raman scattering activities show a good agreement with experimental. Detailed band assignment has been made on the basis of the calculated potential energy distribution (PED). The results provide information on the strength of zinc-ligand bonding in complex.  相似文献   

4.
《Solid State Sciences》2007,9(11):1012-1019
Two novel inorganic–organic hybrid compounds composed of Keggin tungstocobaltate framework and cobalt(II)–N coordination complexes, K[Co(phen)2(H2O)]2[HCoW12O40]·2H2O (1) (phen = 1,10-phenanthroline) and [Co(2,2′-bipy)3]1.5{[Co(2,2′-bipy)2(H2O)][HCoW12O40]·0.5H2O (2) (bipy = bipyridine), have been synthesized under hydrothermal conditions by directly using Keggin POMs as starting materials, which were characterized by elemental analyses, IR, TG analyses and X-ray single crystal diffraction. Crystal data for compound 1: C48H41Co3KN8O44W12, triclinic, space group P-1, a = 10.918(5) Å, b = 13.401(5) Å, c = 13.693(5) Å, α = 69.291(5)°, β = 71.568(5)°, γ = 78.421(5)°, V = 1768.9(12) Å3, Z = 1; for compound 2: C130H104Co7N26O83W24, orthorhombic, space group, C2/c, a = 46.839(9) Å, b = 14.347(3) Å, c = 26.147(5) Å, α = β = γ = 90°, V = 17,570(6) Å3, Z = 4. Compound 1 exhibits a pseudo-1D chainlike structure, in which potassium ions act as linkages of Keggin unit doubly grafted by [Co(phen)2(H2O)] complex. Compound 2 represents a [Co(2,2′-bipy)2(H2O)]2+ mono-grafted Keggin tungstocobaltate derivative with 1.5[Co(2,2′-bipy)3]2+ countercations. The cyclic voltammetric behavior of 1-CPE is similar to the parent 3-CPE, but the cyclic voltammetric behavior of CoII shows a little difference. Variable-temperature magnetic susceptibility measurement of compound 1 demonstrates the presence of antiferromagnetic interactions.  相似文献   

5.
Densities of binary mixtures of N,N-dimethylacetamide (DMA) with water (H2O) or water-d2 (D2O) were measured at the temperatures from T=277.13 K to T=318.15 K by means of a vibrating-tube densimeter. The excess molar volumes VmE, calculated from the density data, are negative for the (H2O + DMA) and (D2O + DMA) mixtures over the entire range of composition and temperature. The VmE curves exhibit a minimum at x(DMA)≅0.4. At each temperature, this minimum is slightly deeper for the (D2O + DMA) mixtures than for the corresponding (H2O + DMA) mixtures. The difference between D2O and H2O systems becomes smaller when the temperature increases. The VmE results were correlated using a modified Redlich–Kister expansion. The partial molar volume of DMA plotted against x(DMA) goes through a sharp minimum in the water-rich region around x(DMA)≅0.08. This minimum is more pronounced the lower the temperature and is deeper in D2O than in H2O at each temperature. Again, the difference becomes smaller as the temperature increases. The excess expansion factor αE plotted against x(DMA) exhibit a maximum in the water rich region of the mole fraction scale. At each temperature, this maximum is higher for the (D2O + DMA) mixtures than for the corresponding (H2O + DMA) mixtures, and the difference becomes smaller as the temperature increases. At its maximum, αE can be even more than 25 per cent of total value of the cubic expansion coefficient α in the (H2O + DMA) and (D2O + DMA) mixtures.  相似文献   

6.
An experimental study on metastable equilibria at T=288 K in the quinary system Li2CO3 + Na2CO3 + K2CO3 + Li2B4O7 + Na2B4O7 + K2B4O7 + H2O was done by isothermal evaporation method. Metastable equilibrium solubilities and densities of the solution were determined experimentally. According to the experimental data, the metastable equilibrium phase diagram under the condition saturated with Li2CO3 was plotted, in which there are four invariant points; nine univariant curves; six fields of crystallization: K2CO3 · 3/2H2O, K2B4O7 · 5H2O, Li2B2O4 · 16H2O, Na2B2O4 · 8H2O, Na2CO3 · 10H2O, NaKCO3 · 6H2O. Some differences were found between the stable phase diagram at T=298 K and the metastable one at T=288 K.  相似文献   

7.
Water activities in the ternary system (CaCl2 + SrCl2 + H2O) and its sub-binary system (CaCl2 + H2O) at T = 298.15 K have been elaborately measured by an isopiestic method. The data of the measured water activity were used to justify the reliability of solubility isotherms reported in the literature by correlating them with a thermodynamic Pitzer–Simonson–Clegg (PSC) model. The model parameters for representing the thermodynamic properties of the (CaCl2 + H2O) system from (0 to 11) mol  kg−1 at T = 298.15 K were determined, and the experimental water activity data in the ternary system were compared with those predicted by the parameters determined in the binary systems. Their agreement indicates that the PSC model parameters can reliably represent the properties of the ternary system. Under the assumption that the equilibrium solid phases are the pure solid phases (SrCl2  6H2O and CaCl2  6H2O)(s) or the ideal solid solution consisting of CaCl2  6H2O(s) and SrCl2  6H2O(s), the solubility isotherms were predicted and compared with experimental data from the literature. It was found that the predicted solubility isotherm agrees with experimental data over the entire concentration range at T = 298.15 K under the second assumption described above; however, it does not under the first assumption. The modeling results reveal that the solid phase in equilibrium with the aqueous solution in the ternary system is an ideal solid solution consisting of SrCl2  6H2O(s) and CaCl2  6H2O(s). Based on the theoretical calculation, the possibility of the co-saturated points between SrCl2  6H2O(s) and the solid solution (CaCl2  6H2O + SrCl2  6H2O)(s) and between CaCl2  6H2O(s) and the solid solution (CaCl2  6H2O + SrCl2  6H2O)(s), which were reported by experimental researchers, has been discussed, and the Lippann diagram of this system has been presented.  相似文献   

8.
By a simple DTA system, the glass transition temperatures of the quaternary ammonium type ionic liquid, {N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium iodide, [DEME][I] + H2O} mixtures after quick pre-cooling were measured as a function of water concentration (x mol% H2O). Results were compared with the previous results of {[DEME][BF4] + H2O} mixtures in which double glass transitions were observed in the water concentration region of (16.5 to 30.0) mol% H2O. Remarkably, we observed the double glass transition phenomenon in {[DEME][I] + H2O} mixtures too, but the two-Tgs regions lie towards the water-rich side of (77.5 to 85.0) mol% H2O. These clearly reflect the difference in the anionic effect between BF4- and I? on the water structure. The end of the glass-formation region of {[DEME][I] + H2O} mixtures is around x = 95.0 mol% H2O, and this is comparable to that of {[DEME][BF4] + H2O} mixtures (x = 96.0 mol% H2O).  相似文献   

9.
《Solid State Sciences》2007,9(7):644-652
Na2Cu(PO2NH)4·7H2O and KxNa2−xCu(PO2NH)4·7H2O (x  0.5) were synthesized by gel crystallization in sodium silicate gels. The crystal structures were solved by single-crystal X-ray methods and found to be isotypic (Pnma, Z = 4; Na2Cu(PO2NH)4·7H2O: a = 627.5(2) pm, b = 1456.0(3) pm, c = 1900.5(4) pm, R1 = 0.0352; K0.47Na1.53Cu(PO2NH)4·7H2O: a = 632.2(2) pm, b = 1460.0(3) pm, c = 1936.4(4) pm, R1 = 0.0345). The P4N4 rings of the tetrametaphosphimate anion exhibit a distorted chair-2 conformation with admixtures of saddle and crown conformation. The M+ ions are six- and sevenfold coordinated by oxygen atoms, the Cu2+ ions are fivefold coordinated, respectively. The MO7 and the CuO5 units form pairs of face-sharing polyhedra, which are connected by common corners forming chains and are further interconnected by tetrametaphosphimate anions, forming a three-dimensional network structure with channels along [100] and [010]. The MO6 units form chains of face-sharing polyhedra, which are situated in the channels along [100]. Extended hydrogen bonding reinforces the three-dimensional framework structure of the compounds. 23Na-MAS NMR experiments were conducted to verify the K/Na distribution on the M sites derived from the X-ray crystal structure refinement.  相似文献   

10.
《Solid State Sciences》2007,9(8):672-677
A cerium(IV) phosphate has been prepared using precipitation methods and its structure has been solved by single crystal X-ray diffraction (R1 = 0.0292 for 3092 reflections with I>2σ(I) and wR2 = 0.0540). Ce(H2O)(PO4)3/2(H3O)1/2(H2O)1/2 crystallises in the monoclinic space group C2/c (a = 15.7058(17) Å, b = 9.6261(9) Å, c = 10.1632(4) Å, ß = 121.623(7)°, and V = 1308.4 (2) Å3). Its structure is based on a negatively charged 3D framework, made of cerium atoms connected by PO4 tetrahedra. There are two types of PO4 units; one shares only corners with the cerium coordination polyhedra while the other one shares edges and corners. This structure also includes hydronium cations, to balance the framework charge, and water molecules. One special feature of this 3D framework is the formation of interconnected tunnels which extend along the c axis and contain the hydronium cations and the water molecules. This open framework and the presence of cationic species in the tunnels are in perfect agreement with the previously reported ion exchange properties.  相似文献   

11.
《Polyhedron》2007,26(9-11):1849-1858
Three compounds composed of phenazine and copper chloride have been prepared and studied by infrared spectroscopy, X-ray diffraction, and variable temperature magnetization. The compounds synthesized and studied are: Cu(phenazine)Cl2 (1), (phenazinium)2CuCl4 · H2O (2), and [Cu(phenazine)Cl2 · H2O]2 (3). Compounds 1 and 2 are described as antiferromagnetic Heisenberg chains with exchange constants ∣J∣/kB = 33.8 K and 8.6 K, respectively.  相似文献   

12.
Here, we have measured the glass transition temperature (Tg) of the ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate–H2O mixed solutions as a function of H2O concentration (x mol% H2O). The glass-forming composition region was also determined. Contrary to the results of the quaternary ammonium type of ionic liquid, N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate–H2O mixed solutions, we did not observed the multiple glass transition behaviour. We also measured the glassy Raman spectra of the solutions at T = 77 K. We find that the “nearly free” hydrogen bonded Raman band of water molecules in the aqueous [bmim][BF4] solution exists up to around x = 60 mol% H2O, even at T = 77 K.  相似文献   

13.
The solubility of the binary system (LiNO3 + H2O) from T = 273.15 K to T = 333.15 K and solubility isotherms of the ternary system (LiCl + LiNO3 + H2O) were elaborately measured at T = 273.15 K and T = 323.15 K. These solubility data, as well as water activities in the binary systems from the literature, were treated by an empirically modified BET model. The isotherms of the ternary system (LiCl + LiNO3 + H2O) were reproduced and a complete phase diagram of the ternary system in the temperature range from 273.15 K to 323.15 K predicted. It is shown that the solubility data for the binary system (LiNO3 + H2O) measured in this work are slightly different from the literature data. Simulated results showed that the saturated salt solution of (2.8LiCl + LiNO3) is in equilibrium with the stable solid phase LiNO3(s) over the temperature range from 283.15 K to 323.15 K, other than the solid phases LiNO3 · 3H2O(s) and LiClH2O(s) as reported by Iyoki et al. [S. Iwasaki, Y. Kuriyama. T. Uemura, J. Chem. Eng. Data 38 (1993) 396–398].  相似文献   

14.
The solubility and the density in the aqueous ternary system (Li2SO4 + MgSO4 + H2O) at T = 308.15 K were determined by the isothermal evaporation. Our experimental results permitted the construction of the phase diagram and the plot of density against composition. It was found that there is one eutectic point for (Li2SO4 · H2O + MgSO4 · 7H2O), two univariant curves, and two crystallization regions corresponding to lithium sulphate monohydrate (Li2SO4 · H2O) and epsomite (MgSO4 · 7H2O). The system belongs to a simple co-saturated type, and neither double salts nor solid solution was found. Based on the Pitzer ion-interaction model and its extended HW models of aqueous electrolyte solution, the solubility of the ternary system at T = 308.15 K has been calculated. The predicted solubility agrees well with the experimental values.  相似文献   

15.
High electrochemical reversibility of the TiS2 anode in “Water-in-Salt” electrolyte (21 m LiTFSI in H2O) is demonstrated for the first time. The wide electrochemical window and low chemical activity of H2O in the “Water-in-Salt” electrolyte not only significantly enhanced the electrochemical reversibility of TiS2 but also effectively suppressed the hydrolysis side reaction in the aqueous electrolyte. Paired with a LiMn2O4 cathode, the LiMn2O4/TiS2 full cell delivers a relatively high discharge voltage of 1.7 V and an energy density of 78 Wh kg 1 as well as a satisfactory rate performance.  相似文献   

16.
Solubility isotherms of the ternary system (LiCl + CaCl2 + H2O) were elaborately determined at T = (283.15 and 323.15) K. Several thermodynamic models were applied to represent the thermodynamic properties of this system. By comparing the predicted and experimental water activities in the ternary system, an empirical modified BET model was selected to represent the thermodynamic properties of this system. The solubility data determined in this work at T = (283.15 and 323.15) K, as well as those from the literature at other temperatures, were used for the model parameterization. A complete phase diagram of the ternary system was predicted over the temperature range from (273.15 to 323.15) K. Subsequently, the Gibbs free energy of formation of the solid phases CaCl2 · 4 H2O(s), CaCl2 · 2 H2O(s), LiCl · 2H2O(s), and LiCl · CaCl2 · 5H2O(s) was estimated and compared with the literature data.  相似文献   

17.
The Raman spectra of bis (tetrapropylammonium tetrachloroantimonate (III)) 2[(C3H7)4N]SbCl4 compound single crystals were studied in the wavenumber range from 3500 to 50 cm−1 for temperatures between 300 and 415 K. Two phase transitions occurring at 343 (Ttr1) and 363 K (Ttr2) were observed and characterized. The strong evolutions of the Raman shift, half-widths and intensity of many lines associated with the organic cations were observed with discontinuities in the vicinity of the two phase transitions. The most important changes were noticed for the band at 307 cm−1 (at room temperature) assignable to the torsion of CH3 groups of the cations. The spectral characteristics of this band was analyzed and consistently described in the framework of an order–disorder model for the two phase transitions. They allowed us to obtain information relative to the activation energy, the correlation length, and the critical exponent of the mechanism. The decrease of the estimated activation energies for the band 307 cm−1 with the increase in temperature has been interpreted in terms of a change in the reorientation motion of cations. The temperature dependence of the reduced peak intensity allowed for the determination of the critical exponents and evolution of the correlation length on approaching the transition.  相似文献   

18.
《Polyhedron》2005,24(16-17):2557-2561
The single-crystal X-ray structure of the single-molecule magnet [Mn12O12(O2CC6H4-2-CH3)16(H2O)4] · CH2Cl2 · 2H2O (complex 1) is reported. Complex 1 is a new example of a “Jahn–Teller isomer”, since it has two Mn(III) ions with abnormally oriented Jahn–Teller elongation axes. Complex 1 has a lower activation energy (Ueff = 29 K) for magnetization reversal relative to other reported [Mn12O12] type molecules (e.g., Ueff = 70 K for Mn12Ac). Single-crystal low temperature magnetization measurements are reported that confirm that complex 1 is a single-molecule magnet. High-field electron paramagnetic resonance measurements were performed on a single crystal to give the spin Hamiltonian parameters.  相似文献   

19.
《Fluid Phase Equilibria》2005,238(2):180-185
Data on the solubility of manganese sulphate monohydrate in water, and in aqueous alcohols is essential for salting-out crystallization studies. The solubilities for the quaternary system MnSO4·H2O + MgSO4·7H2O + H2O + MeOH solution were determined in the temperature ranges 293.2–308.2 K over the mole fraction methanol ranges of 0.00–0.16. The solubility data were used for modelling with the modified extended electrolyte non-random two-liquid (NRTL) equation. The present extension uses ion-specific parameters instead of the electrolyte-specific NRTL binary interaction parameters. This approach has feasibility for many electrolytes and mixed aqueous solution systems principally. The model was found to correlate the solubility data satisfactory.  相似文献   

20.
A new hybrid organic–inorganic material with the structural formula unit [La(H2O)4(m-PO3C6H4COOH)(m-PO2(OH)C6H4COOH)(m-PO(OH)2C6H4COOH)]2 (or [La(H2O)4C21H18O15P3]2) has been synthesized under hydrothermal condition from La(NO3)3·6H2O and 3-phosphonobenzoic acid (m-PO(OH)2–C6H4–COOH) which is a rigid organic precursor possessing two types of functional groups: phosphonic acid and carboxylic acid. The two units of the produced hybrid are linked together by hydrogen bonds leading to a layered framework composing of by a repetition of inorganic and organic slices. The organic layers consist of dimeric units made of two meta-phosphono-benzoic acid linked together by hydrogen bonds involving their COOH groups. Two kinds of dimeric units are observed: PO3C6H4COOH?HOOCC6H4PO(OH)2, present 2 times in the structure, and PO2(OH)C6H4COOH?HOOCC6H4PO2(OH). The material crystallises in a monoclinic cell (C2/c (15) space group) with the following parameters: a = 42.515(4) Å, b = 7.4378(6) Å, c = 20.307(2) Å, β = 118.031(6)°, V = 5668.2(9) Å3, Z = 4, density = 1.908 g/cm3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号