首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resonance Raman spectra of free-base tetraphenylporphine (TPP) were obtained with 397.9, 416, and 435.7 nm excitation wavelengths and density functional calculations were done to elucidate the electronic transitions and the resonance Raman spectra (RRs) of TPP. The RRs indicate that the Franck–Condon region photodynamics for S0  S4 electronic state is predominantly along the Cm–ph stretch while that for S0  S3 electronic state is predominantly along the porphin ring CβCβ stretch. Non-totally symmetric vibrational modes were regularly presented in resonance Raman spectra: the shorter the excitation wavelengths were, the stronger intensity the modes had, which can be interpreted in terms of electric dipole transition moments caused by Franck–Condon and Herzberg–Teller coupling.Four non-total symmetry vibrational mode υ52, υ64, υ97 and υ130 in A2 irreducible representative of TPP were observed in 397.9, 416 and 435.7 nm resonance Raman spectrum. With the shorter wavelength laser excitations at 416 or 397.9 nm, the A2 vibrational modes show more enhanced Raman intensity by comparison with those in the TPP spectrum excited at 435.7 nm.  相似文献   

2.
Raman spectrum of the meso tetraphenylporphine (TPP) deposited onto smooth copper surface as thin film were recorded in the region 200–1700 cm−1. To investigate the effect of meso-phenyl substitution rings on the vibrational spectrum of free base porphyrin, we calculated Raman and infrared (IR) spectra of the meso-tetraphenylporphine (TPP), meso tetramethylporphine (TMP), copper (II)porphine (CuPr) and free base porphine (FBP) at the B3LYP/6-311+G(d,p) level of the density functional theory (DFT). The observed Raman spectrum of the TPP is assigned based on the calculated its Raman spectrum in connection with the calculated spectra of the TMP, CuPr and FBP by taking into account of their corresponding vibrational motions of the Raman modes of frequencies. Results of the calculations clearly indicated that the meso tetraphenyl substitution rings are totally responsible for the observed Raman bands at ∼1593, 1234 and 1002 cm−1. The calculated and observed Raman spectra also suggested that the observed Raman band with a medium intense at 962 cm−1 might result from the surface plasmon effect. Furthermore, the observed Raman bands with medium intense at ∼334 and ∼201 cm−1 are as results of the dimerization or aggregation of the TPP or would be that related to intramolecular interaction. We also calculated IR spectra of these molecules at same level of the theory. To investigate the solvent effect on the vibrational spectrum of porphine, the Raman and IR spectra of the TPP and FBP are calculated in solution phase where water used as solvent. The results of these calculation indicated that there is no any significant effect on the vibrational spectrum of the TPP.  相似文献   

3.
We calculated IR, nonresonance Raman spectra and vertical electronic transitions of the zigzag single-walled and double-walled boron nitride nanotubes ((0,n)-SWBNNTs and (0,n)@(0,2n)-DWBNNTs). In the low frequency range below 600 cm−1, the calculated Raman spectra of the nanotubes showed that RBMs (radial breathing modes) are strongly diameter-dependent, and in addition the RBMs of the DWBNNTs are blue-shifted reference to their corresponding one in the Raman spectra of the isolated (0,n)-SWBNNTs. In the high frequency range above ∼1200 cm−1, two proximate Raman features with symmetries of the A1g (∼1355 ± 10 cm−1) and E2g (∼1330 ± 25 cm−1) first increase in frequency then approach a constant value of ∼1365 and ∼1356 cm−1, respectively, with increasing tubes’ diameter, which is in excellent agreement with experimental observations. The calculated IR spectra exhibited IR features in the range of 1200–1550 cm−1 and in mid-frequency region are consistent with experiments. The calculated dipole allowed singlet–singlet and triplet–triplet electronic transitions suggesting a charge transfer process between the outer- and inner-shells of the DWBNNTs as well as, upon irradiation, the possibility of a system that can undergo internal conversion (IC) and intersystem crossing (ISC) processes, besides the photochemical and other photophysical processes.  相似文献   

4.
The present investigation reports the effect of influence of aluminum ions on radiation damage of strontium borosilicate glasses studied by means of spectroscopic (viz., optical absorption (OA), infrared and Raman spectra). The composition of the glasses chosen for the study is 40SrO–xAl2O3–(15-x) B2O3–40SiO2 (x = 5, 7.5, 10), all in mol%. The glasses were synthesized by conventional melt quenching method. Later, the samples were exposed to gamma (γ) radiation dose of strengths 10 kGy and 30 kGy with a dose rate of 1.5 Gy/s using 60Co as radiation source. The infrared spectra (IR), Raman spectra and optical absorption (OA) spectra of the samples were recorded at ambient temperature before and after irradiation. The OA spectra of the pre-irradiated samples do not exhibit any absorption bands in the UV–vis regions and IR and Raman spectra exhibited conventional vibrational bands due to different borate, silicate AlO4 and AlO6 structural units. The OA spectra of post irradiated samples exhibited a broad absorption band in the wavelength region 600–750 nm; it is attributed to electron trapped color centers. The intensity of this peak is observed to increase with increase of the γ-ray dose. Considerable changes in the intensities of various bands in the IR and Raman spectra were also observed. The changes were explained based on structural modifications taking place in the glass network due to γ-ray irradiation and finally it is concluded that the glasses mixed with 10.0 mol% of Al2O3 are relatively more radiation resistant.  相似文献   

5.
Mixed alkali borotungstate glasses with xLi2O–(30  x)Na2O–10WO3–60B2O3 (0  x  30) composition were prepared by melt quench technique. FT-IR and Raman spectroscopic studies were employed to investigate the structure of all the prepared glasses. Acting as complementary techniques, both IR and Raman measurements revealed that the network structure of the present glasses mainly based on BO3 and BO4 units placed in different structural groups. Raman spectra confirm the IR results regarding the presence of tungsten ions mainly as WO6 groups. In the present work, the mixed alkali effect (MAE) has been investigated in the above glass system using FTIR and Raman studies.  相似文献   

6.
Here, we have measured the glass transition temperature (Tg) of the ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate–H2O mixed solutions as a function of H2O concentration (x mol% H2O). The glass-forming composition region was also determined. Contrary to the results of the quaternary ammonium type of ionic liquid, N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate–H2O mixed solutions, we did not observed the multiple glass transition behaviour. We also measured the glassy Raman spectra of the solutions at T = 77 K. We find that the “nearly free” hydrogen bonded Raman band of water molecules in the aqueous [bmim][BF4] solution exists up to around x = 60 mol% H2O, even at T = 77 K.  相似文献   

7.
The samples of dibarium magnesium orthoborate Ba2Mg(BO3)2 were synthesized by solid-state reaction. The X-ray diffraction (XRD) patterns and Raman spectra of the samples were collected. Electronic structure and vibrational spectroscopy of Ba2Mg(BO3)2 were systematically investigated by first principle calculation. A direct band gap of 4.4 eV was obtained from the calculated electronic structure results. The top valence band is constructed from O 2p states and the low conduction band mainly consists of Ba 5d states. Raman spectra for Ba2Mg(BO3)2 polycrystalline were obtained at ambient temperature. The factor group analysis results show the total lattice modes are 5Eu + 4A2u + 5Eg + 4A1g + 1A2g + 1A1u, of which 5Eg + 4A1g are Raman-active. Furthermore, we obtained the Raman active vibrational modes as well as their eigenfrequencies using first-principle calculation. With the assistance of the first-principle calculation and factor group analysis results, Raman bands of Ba2Mg(BO3)2 were assigned as Eg (42 cm−1), A1g (85 cm−1), Eg (156 cm−1), Eg (237 cm−1), A1g (286 cm−1), Eg (564 cm−1), A1g (761 cm−1), A1g (909 cm−1), Eg (1165 cm−1). The strongest band at 928 cm−1 in the experimental spectrum is assigned to totally symmetric stretching mode of the BO3 units.  相似文献   

8.
We observed the Raman spectra of carriers, positive polarons and bipolarons, generated in a poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT-C14) film by FeCl3 vapor doping. Electrical conductivity and Raman measurements indicate that the dominant carriers in the conducting state were bipolarons. We identified positive polarons and bipolarons generated in an ionic-liquid-gated transistor (ILGT) fabricated with PBTTT-C14 as an active semiconductor and an ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [BMIM][TFSI] as a gate dielectric using Raman spectroscopy. The relationship between the source−drain current (ID) at a constant source−drain voltage (VD) and the gate voltage (VG) was measured. ID increased above −VG = 1.1 V and showed a maximum at −VG = 2.0 V. Positive polarons were formed at the initial stage of electrochemical doping (−VG = 0.8 V). As ID increased, positive bipolarons were formed. Above VG = −2.0 V, bipolarons were dominant. The charge density (n), the doping level (x), and the mobility of the bipolarons were calculated from the electrochemical measurements. The highest mobility (μ) of bipolarons was 0.72 cm2 V−1 s−1 at x = 110 mol%/repeating unit (−VG = 2.0 V), whereas the highest μ of polarons was 4.6 × 10−4 cm2 V−1 s−1 at x = 10 mol%.  相似文献   

9.
The paper presents the study of selected montmorillonite standards by Raman spectroscopy and microscopy supported by elemental analysis, X-ray powder diffraction analysis and thermal analysis. Dispersive Raman spectroscopy with excitation lasers of 532 nm and 780 nm, dispersive Raman microscopy with excitation laser of 532 nm and 100× magnifying lens, and Fourier Transform-Raman spectroscopy with excitation laser of 1064 nm were used for the analysis of four montmorillonites (Kunipia-F, SWy-2, STx-1b and SAz-2). These mineral standards differed mainly in the type of interlayer cation and substitution of octahedral aluminium by magnesium or iron. A comparison of measured Raman spectra of montmorillonite with regard to their level of fluorescence and the presence of characteristic spectral bands was carried out. Almost all measured spectra of montmorillonites were significantly affected by fluorescence and only one sample was influenced by fluorescence slightly or not at all. In the spectra of tested montmorillonites, several characteristic Raman bands were found. The most intensive band at 96 cm−1 belongs to deformation vibrations of interlayer cations. The band at 200 cm−1 corresponds to deformation vibrations of the AlO6 octahedron and at 710 cm−1 can be assigned to deformation vibrations of the SiO4 tetrahedron. The band at 3620 cm−1 corresponds to the stretching vibration of structural OH groups in montmorillonites.  相似文献   

10.
Raman spectra of mineral peretaite Ca(SbO)4(OH)2(SO4)2·2H2O were studied, and related to the structure of the mineral. Raman bands observed at 978 and 980 cm?1 and a series of overlapping bands observed at 1060, 1092, 1115, 1142 and 1152 cm?1 are assigned to the SO42? ν1 symmetric and ν3 antisymmetric stretching modes. Raman bands at 589 and 595 cm?1 are attributed to the SbO symmetric stretching vibrations. The low intensity Raman bands at 650 and 710 cm?1 may be attributed to SbO antisymmetric stretching modes. Raman bands at 610 cm?1 and at 417, 434 and 482 cm?1 are assigned to the SO42? ν4 and ν2 bending modes, respectively. Raman bands at 337 and 373 cm?1 are assigned to O–Sb–O bending modes. Multiple Raman bands for both SO42? and SbO stretching vibrations support the concept of the non-equivalence of these units in the peretaite structure.  相似文献   

11.
We investigate the nature of bonding and charge states in (U1−yCey)O2 (y = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) by Raman spectroscopy. Raman spectrum of UO2 exhibits two prominent bands below 1000 cm−1, a F2g mode at 446 cm−1 and a F1u LO mode at 578 cm−1. As y is increased from 0 to 0.6, the F1u exhibits a large blue shift of 90 cm−1, and from y = 0.6 to 1.0, a red shift of 54 cm−1. We show that our results can be interpreted as arising from anisotropic compression/relaxation of the lattice under Ce substitution and this can give an indication of its charge states. Alternate interpretations have been given in the literature on the effect of substituents and dopants to the Raman spectra of UO2 and CeO2. The present interpretation of chemical stress effects can be taken as another plausible explanation.  相似文献   

12.
《Vibrational Spectroscopy》2007,43(2):353-356
We present results of Raman scattering studies on LaMn1−xCoxO3+δ over a wide range of doping content (x = 0.1–0.75) and temperature range of 20–300 K. Powder X-ray diffraction patterns show that there is a structural change from orthorhombic to rhombohedral at x = 0.5 as x increases. Raman spectra of all LaMn1−xCoxO3+δ samples show peaks near 260, 500, and 650 cm−1. However, the Raman spectra are not drastically different from each other across the structural phase transition at x = 0.5. On the other hand, the peak frequencies of the modes near 260 and 500 cm−1 as functions of Co content (x) show slope changes at x = 0.5. The full-width at the half-maximum (FWHM) of the mode near 650 cm−1 as a function of Co content (x) shows minimum at x = 0.5. Normally, larger values of FWHM are expected at near x = 0.5, if the mode were affected by the structural disorder at the phase boundary. Therefore, it is likely due to lowest charge concentration at x = 0.5, which results in lowest screening effect. This is consistent with the fact that the intensity of the phonons is strongest at x = 0.5. As the temperature decreases, the two peaks near 500 and 650 cm−1 of different Co contents, related with octahedral distortions, are found to shift to lower frequencies unlike the usual temperature behavior. However, no abrupt change in the peak frequencies and the FWHM is observed across measured temperature range, regardless of the Co content.  相似文献   

13.
In this paper, we present results of high-pressure Raman scattering studies in β-MgMoO4 from atmospheric to 8.5 GPa. The experiments were carried out using methanol–ethanol as pressure medium. By analyzing the pressure dependence of the Raman data (change in the number of lattice modes, splitting of bands and wavenumber discontinuities) we were able to observe a phase transition undergone by the β-MgMoO4 at 1.4 GPa, which is only completed at ∼5 GPa. The transition was observed to be irreversible and the modifications in the Raman spectra were attributed to the changes in coordination of Mo ions from tetrahedral to octahedral. The transition possibly changes the original C2/m symmetry to C2/m or to P2/c. Implication on the phase transition for similar molybdate structures, such as α-MnMoO4, is also highlighted.  相似文献   

14.
《Vibrational Spectroscopy》2002,28(2):209-221
Syngenite (K2Ca(SO4)2·H2O), formed during treatment of manure with sulphuric acid, was studied by infrared, near-infrared (NIR) and Raman spectroscopy. Cs site symmetry was determined for the two sulphate groups in syngenite (P21/m), so all bands are both infrared and Raman active. The split ν1 (two Raman+two infrared bands) was observed at 981 and 1000 cm−1. The split ν2 (four Raman+four infrared bands) was observed in the Raman spectrum at 424, 441, 471 and 491 cm−1. In the infrared spectrum, only one band was observed at 439 cm−1. From the split ν3 (six Raman+six infrared) bands three 298 K Raman bands were observed at 1117, 1138 and 1166 cm−1. Cooling to 77 K resulted in four bands at 1119, 1136, 1144 and 1167 cm−1. In the infrared spectrum, five bands were observed at 1110, 1125, 1136, 1148 and 1193 cm−1. From the split ν4 (six infrared+six Raman bands) four bands were observed in the infrared spectrum at 604, 617, 644 and 657 cm−1. The 298 K Raman spectrum showed one band at 641 cm−1, while at 77 K four bands were observed at 607, 621, 634 and 643 cm−1. Crystal water is observed in the infrared spectrum by the OH-liberation mode at 754 cm−1, OH-bending mode at 1631 cm−1, OH-stretching modes at 3248 (symmetric) and 3377 cm−1 (antisymmetric) and a combination band at 3510 cm−1 of the H-bonded OH-mode plus the OH-stretching mode. The near-infrared spectrum gave information about the crystal water resulting in overtone and combination bands of OH-liberation, OH-bending and OH-stretching modes.  相似文献   

15.
《Vibrational Spectroscopy》2009,49(2):259-262
In order to evidence the structural changes induced by CuO and V2O5 in the phosphate glass network and their modifier or former role, x(CuO·V2O5)(100  x)[P2O5·CaO] glass system was prepared and investigated using Raman spectroscopy (0  x  40 mol%).Raman spectra of the studied glasses present the specific bands of the phosphate glasses at low concentration of transition metal (TM) ions, but at higher concentration (x > 7 mol%) a strong depolymerization of the phosphate network appears; non-bridging oxygen atoms are involved in VOP and CuOP bonds and new short units are formed. For a high concentration of V2O5 (x > 10 mol%) the Raman bands of V2O5 prevail in the spectra; this fact suggests that vanadium oxide imposes its structural units in the network acting thus as a network glass former.2D correlation analysis was also applied for the concentration-dependent Raman spectra in order to verify the assignments of the vibration modes and to find correlations in the changes induced by TM ions content. 2D correlation maps indicate a good correlation between the bands at ∼705 cm−1 assigned to POP stretching vibration and at ∼1175 cm−1 assigned to PO2 groups which suggest the depolymerization of the phosphate network. The correlation between the 1270 cm−1 and 930 cm−1 bands also suggests that V2O5 oxide is responsible for PO bonds breaking and POV formation.  相似文献   

16.
《Vibrational Spectroscopy》2009,51(2):169-177
Effects of the meso-substituents and central metals on the molecular structures, atomic charges, molecular orbital energy gaps, electronic absorption spectra, and infrared (IR) spectra of 12 meso-tetrasubstituted porphyrin complexes including metal-free porphyrins H2P or (Por = TPP, TFPP, TClPP, TPyP) (14) and their metal complexes MPor (M = Mg, Zn; Por = TPP, TFPP, TClPP, TPyP) (512) [TPP = meso-tetrakis(phenyl)porphyrinate; TFPP = meso-tetrakis(4-fluorophenyl)porphyrinate; TClPP = meso-tetrakis(4-chlorophenyl)porphyrinate; TPyP = meso-tetrakis(4-pyridyl) porphyrinate] are systematically studied by density functional theory calculations at the B3LYP/6-31G(d) level. Good consistency was found between the calculated molecular structures and the experimental X-ray crystallography ones for 1, 3, and 4, and between the simulated electronic absorption and IR spectra and the experimental ones for 1 and 4. The calculation results reveal that introducing substituents at the meso positions of porphyrin induces increasing change in the molecular structures, atomic charges distribution, HOMO and LUMO energy, electronic absorption spectra, and IR spectra along with the increase in the electron-withdrawing ability of substituents in the order of phenyl, 4-fluorophenyl, 4-chlorophenyl, and pyridyl group. Furthermore, the central metal in porphyrins displays much significant influence on the structure and spectroscopic properties of meso-substituted porphyrin complexes. The electronic absorption and IR spectra of 112 are compared and assigned in detail. The present work should be not only helpful towards understanding the meso-substitutional and central metallic effects on the structure and spectroscopic properties of meso-substituted porphyrin complexes, but also useful in correctly assigning electronic absorption and IR spectra for porphyrin complexes.  相似文献   

17.
We measured 785 nm excited Raman and infrared spectra of pentacene-d14. The observed spectra were assigned on the basis of the Raman and infrared spectra calculated by the density functional theory (DFT) method at the B3LYP/6⬜311 + G** level. We measured 785 nm excited Raman spectrum of a pentacne-d14:C60 bulk heterojunction film. The spectrum was assigned on the basis of the wavenumber shifts upon deuteration of pentacene. The assignments of the 1462 and 493 cm↙1 Ag bands of C60 were confirmed. The 511, 453, and 256 cm↙1 bands, which were observed only in pentacene:C60 bulk heterojunction films, did not show large deuteration shifts. This result indicates that the 511, 453, and 256 cm↙1 bands are attributed to activation of the silent modes of C60 due to symmetry lowering.  相似文献   

18.
《Solid State Sciences》2007,9(5):385-393
Beige crystals of a new magnesium hydrogen orthophosphate salt, Mg3.5H2(PO4)3, as well as nanoparticles of an amorphous, non-Mg-containing phosphate material, Fe1−yKyPO4 (0 < y < 1), have been produced by hydrothermal reactions in supercritical water (SCW) of equivalent quantities of aqueous MgCl2·6H2O (2 M), and K4P2O7 (1 M) in concentrated HCl in a stainless-steel batch reactor at 400–450 °C and 25–32 MPa. The new salt has been characterized by single-crystal X-ray diffraction and IR and Raman spectroscopies. It crystallizes in the triclinic space group , Z = 2 with the following unit-cell parameters: a = 6.438(1), b = 7.856(1), c = 9.438(1) Å; α = 104.57(1), β = 108.61(1), γ = 101.28(1)°, V = 739.99 Å3. The effects of the SCW conditions on the nature of the products and their yields and morphologies have been studied by IR and Raman spectroscopies, X-ray powder diffraction, X-ray energy dispersive analysis, scanning electron microscopy, transmission electron microscopy and inductively coupled plasma analysis.  相似文献   

19.
The phonon dispersions of SrMoO4 crystal are calculated using the lattice dynamical calculations approach. Spontaneous Raman spectra in the SrMoO4 were measured in the temperature range from 10 K to 295 K, and the temperature dependence of the linewidth of the Bg (95 cm−1) and Ag (888 cm−1) Raman modes was analyzed using the lattice dynamical perturbative approach. We found that different behaviors of these two modes in the case of temperature broadening could be attributed to the large energy band gap in the phonon spectrum resulting in different anharmonic interactions. The calculated temperature dependence of the linewidth of Ag (888 cm−1) mode was well accounted for the experimental one by including both down-conversion by the cubic term and the dephasing by quartic term. The dephasing processes are increased only at high temperatures and the effect of dephasing is related to the size of a large phonon band gap.  相似文献   

20.
In this work, the stability of 5,10,15,20-tetraphenylporphine (TPP) and its metallic derivatives, NiTPP, CoTPP, CuTPP, and ZnTPP has been studied through differential scanning calorimetry and thermogravimetry. The decomposition temperatures are (712, 710, 708, 702, and 671) K for NiTPP, CoTPP, CuTPP, ZnTPP, and TPP, respectively. These values are in correspondence with the N–M bond length dM–N, of the metalloporphyrins. The corresponding molar enthalpies of melting ΔfusHm, were determined as (58, 57, 55, 52, and 44) kJ · mol?1 for the same series. These values are discussed in terms of the crystallographic features in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号