首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isothermal magnetization near a fishtail peak in nanocrystalline B1 NbCy encapsulated in multiwall carbon nanocages is studied within the time window of 100 < t < 4000 s. The current density J exhibits a linear logarithmic time decay. The effective activation energy Ueff increases linearly with temperature T and is independent of applied magnetic field H. The results of J(t) and Ueff (T, H) are consistent with the Anderson–Kim flux–creep model for thermally activated motion of uncorrelated vortices or vortex bundles over a net potential barrier Ueff. Ueff at a fishtail peak field Hfp evolves quickly above a fishtail peak temperature Tfp, but slowly below that temperature. The result suggests that a decrease of flux viscosity coefficient above Tfp at Hfp is the origin of the fishtail peak in nanocrystalline B1 NbCy encapsulated in multiwall carbon nanocages.  相似文献   

2.
Temperature dependence of zero-bias conductance of the vanadium (V)/multiwall carbon nanotube (MWNT)/V structure is studied. As temperature is reduced, the conductance decreases with a functional form consistent with a power law. For the first time, we find that the exponent depends significantly on gate voltage. This exponent dependence cannot be explained by Luttinger-liquid theory for ballistic MWNTs. We interpret the obtained results within the framework of the nonconventional Coulomb blockade theory for strongly disordered MWNTs.  相似文献   

3.
4.
We have investigated the time dependence of the magnetization process of RE-TM alloys. We show from magnetic measurements as well as by direct in-situ observations, using the Kerr effect, that the magnetization reversal takes place by nucleation of a few isolated domains which expand with time (GdFe) but also, for Tb (Co) based alloys, by nucleation only. For low fields (H < Hc) both mechanisms are thermally activated. All the results will be quantitatively analysed using the Fatuzzo theory. The origin and magnitude of the activation energies of these processes will be discussed.  相似文献   

5.
A simple model of Bloch wall motion is described for materials in which there exists a magnetic diffusion after-effect. The model is applied to the statistical system of independent Bloch walls. A qualitative explanation of the time development of magnetization in the d.c. magnetic field, based on this model, is given.  相似文献   

6.
Molecular dynamics simulations have been performed to investigate the structures of Lennard-Jones (LJ) nanowires (NWs) encapsulated in carbon nanotubes (CNTs). We find that the structures of NWs in a small CNT only adopt multi-shell motifs, while the structures of NWs in a larger CNT tend to adopt various motifs. Among these structures, three of them have not been reported previously. The phase boundaries among these structures are obtained regarding filling fractions, as well as the interaction between NWs and CNTs.  相似文献   

7.
We present a theory to study the temperature-dependent behavior of surface magnetization in a ferromagnetic semi-infinite crystal. Our approach is based on the single-site approximation for the s-f model. The effect of the semi-infinite nature of the crystal is taken into account by a localized perturbation method. Using the mean-field theory for the layer-dependent magnetization, the local density of states and the electron-spin polarization are investigated at different temperatures for ordinary and surface transition cases. The results show that the surface magnetic properties may differ strongly from those in the bulk and the coupling constant of atoms plays a decisive role in the degree of spin polarization. In particular, for the case in which the exchange coupling constant on the surface and between atoms in the first and second layer is higher than the corresponding in the bulk, an enhancement of surface Curie temperature and hence the spin polarization can be obtained.  相似文献   

8.
The temperature dependence of magnetization of a nanocrystalline Fe60Co30Zr10 alloy annealed at various temperatures to varying crystal sizes was investigated down to 5 K in the field range up to 5 T. The fitting procedure gave T3/2 as the leading term irrespective of the crystal size. We suggest that the increase of the coefficient by this term for smaller crystals may be connected to an increased relative volume of their surface.  相似文献   

9.
The effect of hydrostatic pressure (up to 1.3 GPa) on the isothermal remanent magnetization of rocks is studied experimentally using a new-type nonmagnetic high-pressure cell produced at the Institute of High-Pressure Physics (Troitsk, Moscow oblast). The experiments were carried out at the European Center for Research and Education in Environmental Geoscience (CEREGE), France.  相似文献   

10.
The temperature dependences of nuclear magnetization and relaxation rates are reviewed theoretically and experimentally in order to quantify the effects of temperature on NMR signals acquired by common imaging techniques. Using common sequences, the temperature dependences of the equilibrium nuclear magnetization and relaxation times must each be considered to fully understand the effects of temperature on NMR images. The temperature dependence of the equilibrium nuclear magnetization is negative because of Boltzmann's distribution for all substances at all temperatures, but the combined temperature dependences of the equilibrium magnetization and relaxation can be negative, weak or positive depending on the temperature (T), echo time (T(E)), repetition time (T(R)), and the temperature dependences of the relaxation times T(1)(T) and T(2)(T) in a pulse sequence. As a result, the magnitude of the NMR signal from a given substance can decrease, increase or stay somewhat constant with increasing temperature. Nuclear thermal coefficients are defined and predictions for spin echo and other simple sequences are verified experimentally using a number of substances representing various thermal and NMR properties.  相似文献   

11.
Photoconductivity effects in pristine and alkali-metal (K, Li) doped multiwalled carbon nanotubes (CNTs) were studied under xenon (100 mW) and also halogen (10 mW) light continues sources. To perform the measurements, the pristine and alkali doped CNTs were deposited into pores of a silver foam plate with nano-metric porosity by electrophoresis technique. The foam acted as a conducting frame for sweeping the photo-induced electrons to prevent rapid local electron–hole recombination in the CNTs. The radiation spectrum of the xenon source was similar to the Sun light spectrum and under normal ambient condition the photocurrents in the alkali doped samples were enhanced noticeably in comparison with the pristine CNTs. These results present a functional photoconductive performance of a heap of as-prepared alkali-metal doped CNTs that would be applicable as a light sensor without the necessity of separation between metallic and semiconducting CNTs (m- and s-CNTs).  相似文献   

12.
The temperature dependence of the self-reversal of magnetization of polycrystalline nickel wire at temperatures from room temperature to the Curie point is examined and interpreted. The critical field for self-reversal and the reversed magnetization decrease steadily towards the Curie point and are affected by tension and the prehistory of the specimen.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 52–55, January, 1973.  相似文献   

13.
It is shown that a mean field theory can describe very closely the variation of magnetization with temperature found in a series of Gd-Tb alloys. The proportionality of the exchange constants to the density of the states at the Fermi energy has been confirmed. The values for the densities of states for Gd and Tb required for satisfactory fitting of the experimental results are in agreement with values calculated from electronic specific heat measurements.  相似文献   

14.
15.
Conductance as a function of voltage and temperature was measured in junctions made of bulk samples of multiwall carbon nanotubes and metal electrodes. A clear zero bias anomaly was observed at low temperatures. The experimental results were analyzed within existing models based on Luttinger liquid and disorder theories. We find that our results are well explained using the quasi-one-dimensional disordered model.  相似文献   

16.
Electrical conductivity σ(T) of the paper consisting of multiwalled carbon nanotubes (MWCNTs) is studied in the temperature range 4.2-295 K, and its magnetoresistivity ρ(B) at various temperatures in magnetic fields up to 9 T is analyzed. The temperature dependence of the paper electrical conductivity σ(T) exhibits two-dimensional quantum corrections to the conductivity below 10 K. The dependences of negative magnetoresistivity ρ(B) measured at various temperatures are used to estimate the wavefunction phase breakdown length L φ of conduction electrons and to obtain the temperature dependence L φ = constT ?p/2, where p ≈ 1/3. Similar dependences of electrical conductivity σ(T), magnetoresistivity ρ(B), and phase breakdown length L φ(T) are detected for the initial MWCNTs used to prepare the paper.  相似文献   

17.
采用无模板化学气相沉积法,以二茂铁为催化剂,二甲苯为碳源,利用单温炉加热装置制备了定向碳纳米管阵列。运用扫描电子显微镜、透射电子显微镜、拉曼光谱和X射线衍射仪等对定向碳纳米管阵列的形貌、成分和物相进行细致的分析和表征。结果表明:制得的碳纳米管阵列具有良好的定向性和多壁管状结构,并且石墨化程度高;碳纳米管中除碳元素外,管中包含有少量以纳米颗粒和纳米线形式存在的铁及其化合物,主要成分是铁和碳化铁。结合碳纳米管的制备和透射电子显微镜分析表征结果,认为超长碳纳米管阵列的生长模式为底部生长方式,即经历催化剂分解、催化、成核、长大、中毒、凝聚成粒和连接成线的循环过程,正是由于碳源和催化剂的连续供应促成了碳纳米管阵列的快速定向生长。  相似文献   

18.
Carbon-encapsulated magnetic nanoparticles are a new class of materials where the core magnetic nanoparticle is protected from reactions with its environment by graphite shells. Having a structure similar to carbon nanotubes, these nanoparticles could be potentially functionalized using methods which are already applied to those structures. We present the effects of acidic treatments based on HCl, HNO3, and H2SO4 on these nanoparticles highlighting the impact on their magnetic and surface properties. We show that acidic treatments based on HNO3 can be successfully applied for the generation of carboxylic groups on the surface of the nanoparticles. Using methylamine as a model, we demonstrate that these functional groups can be used for further functionalization with amino-containing biomolecules via diimide-activated amidation.  相似文献   

19.
20.
A multiwall carbon nanotube crossroads has been fabricated by a manipulation technique using a glass microcapillary, and the low temperature transport properties investigated. The two-terminal conductance of an individual tube shows Tomonaga–Luttinger liquid behavior GTα at high temperature and dI/dVV α at low temperature. However, no evidence of such a power-law behavior is obtained in the four-terminal conductance at the junction, where the conductance shows an almost metallic behavior ‘corrected’ by weak localization. Weak localization would essentially appear in electron states at the junctions of MWNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号