共查询到20条相似文献,搜索用时 15 毫秒
1.
M. Gaber A. F. Rehab D. F. Badr-Eldeen 《Journal of Thermal Analysis and Calorimetry》2008,91(3):957-962
The macrocyclic complexes of Co(II) and Ni(II) having chloride or thiocyanate ions in the axial position have been synthesized
and characterized. These complexes are synthesised by the template condensation of o-phenylenediamine or 2,3-butanedionedihydrazone with the appropriate aldehydes in NH4OH solution in the presence of the metal ions, Co(II) and Ni(II). The complexes were characterized by spectroscopic methods
(IR, UV-Vis and ESR) and magnetic measurements as well as thermal analysis (TG and DTA). The results obtained are commensurate
with the proposed formulae. Spectral studies indicate that these complexes have an octahedral structure. From conductivity
measurements the complexes are non-electrolytes. The kinetic of the thermal decomposition of the complexes was studied and
the thermodynamic parameters are reported. 相似文献
2.
Zhi-Quan Pan Ke DingHong Zhou Qing-Rong ChengYun-Feng Chen Qi-Mao Huang 《Polyhedron》2011,30(13):2268-2274
Three dinickel(II) macrocyclic complexes [Ni2L(μ-OAc)]ClO4•X (L = L1, L2 and L3) with two 2-thiophenoethyl pendant arms, have been synthesized by cyclocondensation between N,N-bis(3-aminopropyl)-2-thiophenoethylamine and 2,6-diformyl-4-R-phenol (where R = Me, Cl and F and X = MeOH, 2MeCN and H2O, respectively), in the presence of nickel(II) ions. The complexes were characterized by elemental analysis, spectroscopic methods and X-ray diffraction techniques. The geometry around both of the Ni(II) ions in each molecule is a slightly distorted octahedral and the thiopheno groups do not coordinate to the Ni(II) ions, resulting that the complexes display contorted saddle-form configurations. The distances between the Ni?Ni centers for the complexes are 3.145, 3.171 and 3.155 Å, respectively. The influences of the substituted groups R in the benzene rings of the macrocyclic units on the structure, electrochemistry, magnetism, cleavage and antibacterial property to DNA have been investigated. The ES-MS results of the complexes confirm that [Ni2L]2+ species in methanol solution are very stable because all the peaks in ES-MS spectra contain this kind of units. The reduction potentials of the complexes shift towards anode upon increasing the drawing electronic ability of substituted groups. Magnetic measurements in the 2-300 K range indicate weak antiferromagnetism for the dinuclear Ni(II) complexes and the magnetic exchange interactions enhance with the decrease of the Ni-Ni distances. These complexes exhibit cleavage activities towards plasmid pBR322 DNA and antibacterial activities. 相似文献
3.
Mohamed A.S. Goher Franz A. Mautner Beate Sodin Brigitte Bitschnau 《Journal of Molecular Structure》2008,879(1-3):96-101
The reaction between zinc(II) azide, Zn(N3)2 and aminopyrazine (ampyz) afforded the complexes: [Zn(N3)2(ampyz)2] (1), [Zn(N3)2(ampyz)]n (2) and [Zn3(N3)6(ampyz)2]n (3). These complexes are characterized by spectroscopic and crystallographic methods. The IR spectra of these compounds are measured and discussed. The structure of 1 consists of isolated tetrahedral zinc atom surrounded by two mono-dentate N-ampyz and two terminal azido ligands. Complex 2 features a zigzag chain of zinc centers in which each zinc is surrounded by alternate di-EO (end-on) and di-EE (end-to-end) azide bridges, the chain thus contains alternate four-membered Zn2N2 and eight-membered Zn2(NNN)2 rings. The two ampyz ligands are located in cis-arrangement and each of them further binds another zinc atom giving rise to a 3D network. Complex 3 contains two structurally different zinc atoms; the six-coordinate Zn(1) center links two di-EO azido bridges and two trans ampyz, thus having ZnN6 chromophore. The five-coordinate Zn(2) center binds two di-EO bridging azido groups and the fifth position is occupied by an N atom from a bridging ampyz molecule. Both zinc centers, therefore participate in the formation of a 1D chain of cyclic Zn2N2 units. Each ampyz ligand binds another zinc atom via the second pyrazinic N atom giving another cross-chain and thus the structure consists of 2D sheets. In these three complexes the azido ligands of all types are asymmetric and linear within the experimental error. 相似文献
4.
Co(II) complexes (1‐4) were prepared and characterized by elemental analyses, infrared spectra, spectral studies, magnetic susceptibility measurements, X‐ray diffraction analysis and thermogravimetric analysis (TGA). The X‐ray diffraction patterns of Co(II) complexes were observed many peaks which indicate the polycrystalline nature. The thermodynamic parameters were calculated by using Coats–Redfern and Horowitz–Metzger methods. The bond length, bond angle and quantum chemical parameters of the Co(II) complexes were studied and discussed. The Co(II) complexes were tested against various Gram‐positive bacteria, Gram‐negative bacteria and fungi. It was found that the Co(II) complex (1) has more antifungal activity than miconazole (antifungal standard drug) against P. italicum at all concentration. The Co(II) complex ( 2 ) has more antibacterial activity than the penicillin against K. pneumoniae at all concentration. The interaction between Co(II) complexes and calf thymus DNA show hypochromism effect. The relationship between the values of HOMO–LUMO energy gap (?E) and the values of intrinsic binding constant (Kb) is revealed increasing of HOMO–LUMO energy gap accompanied by the decrease of Kb. 相似文献
5.
用模板法合成了1个大环金属铜(II)配合物[CuLCl2]·3H2O
(1)和3个大环金属镍(II)配合物[NiLCl2] (2),[NiL](ClO4)2
(3)和[NiLH2](ClO4)4 (4)(L=3,10-二乙基-1,3,5,8,10,12-六氮杂十四烷),通过X-射线衍射单晶结构分析测定了它们的晶体结构。晶体结构显示:配合物1和2的金属离子与大环配体的4个氮原子及大环平面轴向的2个氯离子以八面体配位方式配位;配合物3和4的金属离子与大环配体的4个氮原子以平面正方形配位方式配位,配合物4的侧链氮原子的质子化导致侧链结构翻转,使得其侧链与大环平面共面。 相似文献
6.
Erika Szunyogová Dagmar Mudroňová Katarína Györyová Radomíra Nemcová Jana Kovářová Lenka Piknová-Findoráková 《Journal of Thermal Analysis and Calorimetry》2007,88(2):355-361
Spectroscopic (IR), thermoanalytical (TG/DTG, DTA) and biological methods
were applied to investigate physicochemical and biological properties of seven
zinc(II) complex compounds of the following formula Zn(HCOO)2·2H2O
(I), Zn(HCOO)2·tph (II), Zn(CH3COO)2·2H2O (III), Zn(CH3COO)2·tph
(IV), Zn(CH3COO)2·2phen
(V), Zn(CH3CH2COO)2·2H2O
(VI), Zn(CH3CH2CH2COO)2·2H2O (VII), where tph=theophylline, phen=phenazone. The formation of various
intermediates during thermal decomposition suggests the dependence on the
length of aliphatic carboxylic chain and type of N-donor ligand (tph, phen).
The final product of the thermal decomposition was ZnO. The antimicrobial
activity of these complexes were tested against G+
and G– bacteria. Strong inhibitive effect
was observed towards E. coli, salmonellae
and Staph. aureus. 相似文献
7.
A series of Mn(II) macrocyclic Schiff-base complexes [MnLnCl]+ (n = 1–4) have been prepared via the Mn(II) templated [1+1] cyclocondensation of 2,6-diacetylpyridine or 2,6-pyridinedicarbaldehyde with the symmetrical 1,4-bis(3-aminopropyl)piperazine or the novel asymmetrical N,N′(2-aminoethyl)(3-aminopropyl)piperazine linear amines containing piperazine moiety. The complexes have been characterized by elemental analyses, IR, FAB-MS, magnetic studies and conductivity measurements. The crystal structure of [MnL2(CH3OH)Cl](ClO4) and [MnL4Cl](PF6) complexes have also been determined showing the metal ion in a N4OCl pentagonal bipyramidal or N4Cl highly distorted octahedral geometry, respectively. 相似文献
8.
《Journal of Coordination Chemistry》2012,65(2):277-284
Six macrocyclic complexes, were synthesized by reaction of 1,4-bis(2-carboxyaldehyde phenoxy)butane and various amines and their copper(II) perchlorate complexes were synthesized by template effect reaction of 1,4-bis(2-carboxyaldehyde phenoxy)butane, Cu(ClO4)2?·?6H2O and amines. The metal-to-ligand ratios were found to be 1?:?1. Cu(II) metal complexes are 1?:?2 electrolytes as shown by their molar conductivities (ΛM) in DMF (dimethyl formamide) at 10?3?M. The Cu(II) complexes are proposed to be square planar based on elemental analysis, FT–IR, UV–Vis, magnetic susceptibility measurements, molar conductivity measurements, and mass spectra. 相似文献
9.
Shyamapada Shit Madhusudan Nandy Dipankar Saha Lei Zhang Wolfgang Schmitt Corrado Rizzoli 《Journal of Coordination Chemistry》2016,69(16):2403-2414
Reactions of hydrated zinc(II) trifluoroacetate and sodium azide with two tridentate Schiff bases HL1 (2-((E)-(2-(dimethylamino)ethylimino)methyl)-4-chlorophenol) and HL2 (2-((E)-(2-(dimethylamino)ethylimino)methyl)-4-bromophenol) under the same reaction conditions yielded two dinuclear isostructural zinc(II) complexes, [Zn(L1)(N3)]2 (1) and [Zn(L2)(N3)]2 (2), respectively. The complexes were characterized systematically by elemental analysis, UV–Vis, FT-IR, and 1H NMR spectroscopic methods. Single-crystal X-ray diffraction studies reveal that each of the dinuclear complexes consists of two crystallographically independent zinc(II) ions connected by double bridging phenoxides. All zinc(II) ions in 1 and 2 are surrounded by similar donor sets and display distorted square–pyramidal coordination geometries. The ligands and complexes reveal intraligand 1(π → π*) flourescence. The enhancement of the fluorescence intensities for the complexes compared to the ligands indicates their potential to serve as photoactive materials. 相似文献
10.
Kesheng Shen Xintong Han Chuang Li Guozhen Huang Shanshan Mao Xinkui Shi 《Journal of Coordination Chemistry》2018,71(7):980-990
N,N-bis(N-methyl-2-ylmethylbenzimidazole)aniline (EtAIDB) and its transition metal complexes, [Cu(EtAIDB)Br2]·EtOH {dibromo[N,N-bis(N-methyl-2-ylmethylbenzimidazole)aniline] copper(II) ethanol} (1) and [Zn(EtAIDB)Br2] {dibromo[N,N-bis(N-methyl-2-ylmethylbenzimidazole)aniline] zinc(II)} (2), have been synthesized and characterized by elemental analysis, molar conductivity, UV–visible, and IR spectroscopy. The X-ray crystallographic studies of 1 and 2 have shown two different arrangements: 1 is distorted square-based pyramidal, while 2 can be treated as distorted tetrahedral. The cyclic voltammogram of 1 represents quasi-reversible Cu2+/Cu+ pairs. In vitro antioxidant tests showed that 1 had significant antioxidant activity against superoxide and hydroxy radicals. 相似文献
11.
《Journal of Coordination Chemistry》2012,65(2):337-345
The chelating behavior of some hydrazones towards Cu(II) has been investigated. The isolated complexes were characterized by elemental analysis, magnetic moment, spectra (electronic, IR and ms) and thermal measurements. The IR spectra showed that the ligands are deprotonated in the complexes as bidentate, tridentate and binegative tridentate. Protonation constants of the ligands and the stability constants of their Cu(II) complexes were calculated. Square-planar, square-pyramidal, tetrahedral and/or distorted octahedral structures are proposed. The TGA data help to confirm the chemical formula of the complexes and indicated the steps of their thermal degradations. 相似文献
12.
A new series of binuclear unsymmetrical compartmental oxime complexes (1–5) [M2L] [M=Cu(II), Ni(II)] have been synthesized using mononuclear complex [ML] (L=1,4-bis[2-hydroxy-3-(formyl)-5-methylbenzyl]piperazine), hydroxylamine hydrochloride and triethylamine. In this system there are two different compartments, one has piperazinyl nitrogens and phenolic oxygens and the other compartment has two oxime nitrogens and phenolic oxygens as coordinating sites. The complexes were characterized by elemental and spectral analysis. Electrochemical studies of the complexes show two step single electron quasi-reversible redox processes at cathodic potential region. For copper complexes E1 pc=−0.18 to −0.62 and E2 pc=−1.18 to −1.25 V, for nickel complexes E1 pc=−0.40 to −0.63 and E2 pc=−1.08 to −1.10 V and reduction potentials are sensitive towards the chemical environment around the copper and nickel atoms. The nickel(II) complexes undergo two electrons oxidation. The first one electron oxidation is observed around +0.75 V and the second around +1.13 V. ESR Spectra of the binuclear copper(II) complexes [Cu2L](ClO4), [Cu2L(Cl)], [Cu2L(NO3)] shows a broad signal at g=2.1 indicating the presence of coupling between the two copper centers. Copper(II) complexes show a magnetic moment value of μeff around 1.59 B.M at 298 K and variable temperature magnetic measurements show a −2J value of 172 cm−1 indicating presence of antiferromagnetic exchange interaction between copper(II) centres. 相似文献
13.
Erika Szunyogová Katarína Györyová Daniela Hudecová Lenka Piknová J. Chomič Zuzanna Vargová V. Zeleňák 《Journal of Thermal Analysis and Calorimetry》2007,88(1):219-223
The thermal decomposition of the complexes Zn(form)2⋅2phen
(I), Zn(ac)2⋅2phen
(II), Zn(prop)2⋅2phen
(III), Zn(but)2⋅2phen
(IV), where phen=phenazone, form=formiate,
ac=acetate, prop=propionate, but=butyrate has been studied in air by TG/DTG
and DTA methods. The possible mechanism of the thermal decomposition was proposed.
The final product of thermal decomposition was ZnO. IR data show unidentate
coordination of carboxylate group to Zn(II) ion. The complexes were tested
against various strains of microorganisms and their efficiency decrease in
the sequence yeasts >bacteria>filamentous fungi. 相似文献
14.
Verónica Paredes-García D. Venegas-Yazigi A. Cabrera P. Valencia-Gálvez M. Arriagada D. Ruiz-Leon N. Pizarro A. Zanocco Evgenia Spodine 《Polyhedron》2009
In this work, we present the synthesis and optical study of the binuclear zinc(II) macrocyclic complexes, derived from 4-methyl-2,6-diformylphenol and 1,2-diaminobenzene (H2L). Two zinc macrocyclic complexes with different anions were prepared and characterized: [Zn2LCl2]·H2O (1) and [Zn2L](NO3)2 (2). 相似文献
15.
Gancheva V Yordanov ND Koev L 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2008,69(5):1317-1321
The spectral properties of bis(diaryl-dithiophosphato)copper(II) complexes, [Cu(S(2)P(OR)(2))(2)], with R = o-cresyl (complex I) and 2,6-dimethylphenyl (complex II) are studied by EPR- and vis spectroscopy. In solid (powder) state both complexes exhibit dark brown colour and are paramagnetic. Room temperature EPR spectra of the complexes dissolved in non-coordinating (C(6)H(5)CH(3), C(5)H(12), C(6)H(14)), acceptor (CHCl(3), CCl(4)) or donor (DMFA, DMSO) solvents have typical features of the chromophore CuS(4). In non-coordinating and acceptor solvents their isotropic EPR parameters are: g(iso)=2.047+/-0.003, (Cu)A(iso) = 7.2+/-0.1 mT and (P)A = 0.95+/-0.1 mT. An absorption band characterizes the vis spectra in these solvents with a maximum at 427 nm, due to a ligand-to-metal charge-transfer transition. One hour after dissolution the absorbance at 427 nm follows Beer's law with molar absorptivity (epsilon) about 11000, which does not change significantly after 24 h staying at room temperature or after 30 min heating at 50 degrees C. Both DMFA and DMSO exhibit specific solute-solvent interaction with the acceptor centre of copper complex yielding an axial adduct, with increased g-factor and decreased (hf)A compared to the initial complex. An additional EPR signal with unresolved hyperfine structure is also detected in DMSO. EPR and vis intensities of both bis(diaryl-dtp)Cu(II) complexes decrease after dissolution in both solvents. Moreover, they are EPR silent in pyridine and do not show any absorption in the vis spectra. 相似文献
16.
S. C. Mojumdar G. Madgurambal M. T. Saleh 《Journal of Thermal Analysis and Calorimetry》2005,81(1):205-210
Summary Synthesis, elemental (CHN), spectral (FTIR), thermogravimetry (TG), differential thermal analysis (DTA) and complexometric titration have been applied to the investigation of the thermal behavior and structure of the complexes: Mg(ac)2(mpc)3·3H2O(I), Mg(Clac)2(mpc)2·3H2O(II), Mg(Cl2ac)2(mpc)2·3H2O(III), Mg(Cl3ac)2(mpc)2·3H2O(IV) and [Cu(ac)2(mpc)]2·3H2O(V) (ac=CH3COO-, Clac=ClCH2COO-, Cl2ac=Cl2CHCOO-, Cl3ac=Cl3CCOO- and mpc=methyl-3-pyridyl carbamate). Thermal decomposition of these complexes is a multi-stage processes. The composition of the complexes and the solid state intermediate and resultant products of thermolysis had been identified by means of elemental analysis and complexometric titration. The possible scheme of decomposition of the complexes is suggested. Heating the complexes first resulted in a release of water molecules. The TG results show that the loss of the volatile ligand (mpc) occurs in one step for complexes II, IV and V, and in two steps for complexes I and III. The final solid product of thermal decomposition was MgO or CuO. The thermal stability of the complexes can be ordered in the sequence: I=II<IV<III<V. Mpc was coordinated to Mg(II) or Cu(II) through the nitrogen atom of its heterocyclic ring. IR data suggest to a unidentate coordination of carboxylates to magnesium or copper n complexes I-V. The preliminary studies have shown that the complexes do have antimicrobial activities against bacteria, yeasts and/or fungi. The highest antimicrobial activities were manifested by the complex V. 相似文献
17.
A new approach combining the molecular mechanics (MM) method and the Gillespie-Kepert model was applied to calculate the geometry and strain energy of zinc(II) and cadmium(II) complexes with amino- and pyridyl-containing ligands. High accuracy of calculations of the geometry was demonstrated for more than 20 complexes of these metals. Typical r.m.s. deviations between the calculated and experimental values (X-ray diffraction analysis) were 0.02 Å for bond lengths, 2° for bond angles, and 4° for torsion angles. The size-match selectivity of several macrocycles and polydentate open-chain ligands was studied. Correlations between the calculated strain energies of metal complexes and the experimental values of their stability constants and enthalpies of formation are discussed. 相似文献
18.
The new complexes [Co(ecpzdtc)3] (2) [Zn(ecpzdtc)2(py)] (3) and [Cd(ecpzdtc)2(py)]·H2O (4) have been synthesized from sodium 1-ethoxycarbonyl-piperazine-4-carbodithioate [(Na+(ecpzdtc)−]. The ligand and the complexes have been characterized by elemental analyses, IR, magnetic susceptibility and single crystal X-ray data. The [Zn(ecpzdtc)2(py)] and [Cd(ecpzdtc)2(py)]·H2O complexes contain pyridine as the co-ligand. [Co(ecpzdtc)3] (2) crystallizes in the monoclinic system, whereas [Zn(ecpzdtc)2(py)] (3) and [Cd(ecpzdtc)2(py)]·H2O (4) crystallize in the triclinic system. The sulfur donor sites of the bidentate ligand chelate the metal center, forming a four-membered CS2M ring. The cobalt complex has a distorted octahedral geometry, the zinc complex is almost between trigonal bipyramidal and square pyramidal, whereas the cadmium complex is square pyramidal. The crystal structures of all the complexes are stabilized by various types of inter and intramolecular hydrogen bonding. 相似文献
19.
Ilona V. Raspertova Roman O. Doroschuk Dmytro M. Khomenko Rostyslav D. Lampeka 《Journal of Coordination Chemistry》2017,70(16):2888-2899
Zinc and cadmium complexes, ML2(NO3)2 (L = N-methyl-C-(2-pyridyl)nitrone) were synthesized and characterized by means of X-ray diffraction crystallography and IR and NMR spectroscopy. The organic ligands in the complexes are coordinated via the oxygen atom of the nitrone group and the nitrogen atom of the pyridine moiety. The coordination environment of the central atoms is a distorted octahedron. The bond lengths and angles of the complexes were calculated using the DFT method with B3LYP functional. Theoretical studies revealed that the geometric parameters are in agreement with the experimental data. The fluorescent properties for the zinc and cadmium complexes were investigated at room temperature. 相似文献
20.
A new tridentate benzimidazole ligand (L‐C11) containing undecyl chains and its Mn (II) and Zn (II) complexes were synthesised and characterized by spectroscopic and analytical methods. Molecular structures of complexes [Mn(L‐C11)Cl2] and [Zn(L‐C11)Cl2] were evaluated by X‐ray diffraction studies. The X‐ray data showed metal ions in both complexes are five‐coordinate with distorted square pyramidal geometry around the metal centres. The undecyl chains in the structure of the complexes are aligned in an interdigitated manner (head to tail) forming a non‐polar domain. The aggregation properties of the ligand and its complexes were investigated by UV–Vis. absorption and emission spectroscopies in DMF‐water mixtures. The emission spectral data revealed that the compounds showed aggregation induced quenching (AIQ) in DMF‐water solutions. Moreover, thermal properties of the compounds were investigated by TG, DTG and DSC analysis. 相似文献