首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In neutral aqueous solution of (phenylthio)acetic acid, hydroxyl radical is observed to react with a bimolecular rate constant of 7.2 × 10-1 dm3 mols and the transient absorption bands are assigned toOH radical addition to benzene and sulphur with a rough estimated values of 50 and 40% respectively. The reaction of theOH radical with diphenyl sulphide (k = 4.3 × 108 dm3 mol−1 s−1) is observed to take place with formation of solute radical cation, OH-adduct at sulphur and benzene with estimated values of about 12, 28 and 60% respectively. The transient absorption bands observed on reaction ofOH radical, in neutral aqueous solution of 4-(methylthio)phenyl acetic acid, are assigned to solute radical cation (λmax = 550 and 730 nm), OH-adduct at sulphur (λmax = 360 nm) and addition at benzene ring (λmax = 320 nm). The fraction ofOH radical reacting to form solute radical cation is observed to depend on the electron-withdrawing power of substituted group. In acidic solutions, depending on the concentration of acid and electron-withdrawing power, solute radical cation is the only transient species formed on reaction ofOH radical with the sulphides studied.  相似文献   

2.
The phenyl substituted acridine-1,8-dione (AD) dye reacts with (CH3)2*COH radicals with a bimolecular rate constant of 0.6 × 108 dm3 mol−1 s−1 in acidic aqueous-organic mixed solvent system. The transient optical absorption band (λmax = 465 nm, ɛ = 6.8 × 102 dm3 mol−1 cm−1) is assigned to ADH* formed on protonation of the radical anion. In basic solutions, (CH3)2*COH radicals react with a bimolecular rate constant of 4.6 × 108 dm3 mol−1 s−1 and the transient optical absorption band (λmax = 490 nm, ɛ = 10.4 × 103 dm3 mol−1 cm−1) is assigned to radical anion, AD*, which has a pKa value of 8.0. The reduction potential value of the AD/AD* couple is estimated to be between −0.99 and −1.15 V vs NHE by pulse radiolysis studies. The cyclic voltammetric studies showed the peak potential close to −1.2 V vs Ag/AgCl.  相似文献   

3.
During the irradiation of WO3 films d = 7–160 nm thick by light at λ = 320 nm (I = (1.5–7) × 1015 quantum cm−2 s−1), absorption band at λ = 850 nm appeared along with absorption band edge shift to shorter waves. The subsequent irradiation of samples at λ = 850 nm caused the disappearance of the longwave absorption band. The intrinsic absorption edge of WO3 films was determined (λ = 320 nm). The degree of transformations of WO3 films increased under atmospheric conditions as the intensity of incident light and the time of irradiation (1–140 min) grew and as film thickness decreased. A mechanism of photochemical transformations of WO3 films was suggested. This mechanism included the generation of electron-hole pairs, the recombination of part of nonequilibrium charge carriers, the formation of [eVa2+e] centers, and the isolation of photolysis products.  相似文献   

4.
5.
The spectral and kinetic parameters of transient species generated in the irradiation of 6-ethoxy-2,2,4-trimethyl-8-nitro-1,2-dihydroquinoline were examined by stationary and pulse photolysis in the solvents: heptane, acetonitrile, methanol, and ethanol. Upon excitation of the long-wavelength absorption band (λex > 450 nm), a reversible photochemical reaction was revealed, and the spectral and kinetic parameters of three transient species observed in the photolysis were characterized (λmax = 390, 400, and 420 nm (acetonitrile), k = 97, 500, and 2000 s−1, respectively). The absorption spectra and the rate constants of the decay of transient species are almost independent of the medium polarity and the presence of oxygen in the system. The excited state generated during irradiation to the short-wavelength absorption band (290 < λex < 350 nm) is inactive in the photochemical reaction and deactivates without the formation of transient species. The mechanism of the reversible photochemical reaction is suggested, which involves the opening of the heterocycle N-C bond upon photoexcitation of the long-wavelength absorption band and the thermal back reaction.  相似文献   

6.
Dimethylgermylene and its Ge=Ge doubly bonded dimer, tetramethyldigermene, have been characterized directly in solution by 308-nm laser flash photolysis in n-hexane solution, as well as 254-nm photolysis in hydrocarbon glasses at t = 77 K. An absorption band maximum of λ max ≈ 430 nm and molar absorption coefficient of ε ≈ 2,700 M−1 cm−1 have been shown to be attributable to low-temperature glasses, while the absorption band maximum of λ max ≈ 480 nm and molar absorption coefficient of ε ≈ 2,400 M−1 cm−1 have been shown to be related to dimethylgermylene in n-hexane solution. The molar absorption coefficient of tetramethyldigermene (λ max ≈ 380 nm) was determined to be ε ≈ 84,000 M−1 cm−1. The germylene is formed via (formal) cheletropic photocycloreversion of 7,7′-dimethylgerma-1,4,5,6-tetraphenyl-2,3-benzo-norbornadiene. Tetramethyldigermene and 1,2,3,4-tetraphenylnaphthalene in the triplet state were formed, together with dimethylgermylene. We attempted to explain the various contradictory interpretations of experimental data existing in the literature on this reaction.  相似文献   

7.
The electronic absorption spectra of radical cations of dipyrroles with a phenylene bridge were studied by laser flash photolysis and quantum chemical methods. Intense absorption bands of the radical cations in the visible region (λmax ≈ 500 nm, εmax > 2 · 104 L mol−1 cm−1) are caused by excitation of electrons from single occupied MOs to the LUMO. In the near IR region, calculations predict additional, relatively intense (f≈ 0.27–0.29) electronic transitions associated with excitation of electrons from low-lying MOs to the single occupied MO.  相似文献   

8.
Reactions of eaq, OH radicals and H atoms were studied with n-allylthiourea (NATU) using pulse radiolysis. Hydrated electrons reacted with NATU (k = 2.8×109 dm3 mol−1 s−1) giving a transient species which did not have any significant absorption above 300 nm. It was found to transfer electrons to methyl viologen. At pH 6.8, the reduction potential of NATU has been determined to be −0.527 V versus NHE. At pH 6.8, OH radicals were found to react with NATU, giving a transient species having absorption maxima at 400–410 nm and continuously increasing absorption below 290 nm. Absorption at 400–410 nm was found to increase with parent concentration, from which the equilibrium constant for dimer radical cation formation has been estimated to be 4.9×103 dm3 mol−1. H atoms were found to react with NATU with a rate constant of 5 × 109 dm3 mol−1 s−1, giving a transient species having an absorption maximum at 310 nm, which has been assigned to H-atom addition to the double bond in the allyl group. Acetoneketyl radicals reacted with NATU at acidic pH values and the species formed underwent reaction with parent NATU molecule. Reaction of Cl.−2 radicals (k = 4.6 × 109 dm3 mol−1 s−1) at pH 1 was found to give a transient species with λmax at 400 nm. At the same pH, reaction of OH radicals also gave transient species, having a similar spectrum, but the yield was lower. This showed that OH radicals react with NATU by two mechanisms, viz., one-electron oxidation, as well as addition to the allylic double bond. From the absorbance values at 410 nm, it has been estimated that around 38% of the OH radicals abstract H atoms and the remaining 62% of the OH radicals add to the allylic double bond.  相似文献   

9.
The reaction of the · OH radical with the oxalate ion in an acidic aqueous solution was studied by pulse radiolysis. The rate constant for the reaction of formation of the radical HOOC-COO·(λmax = 250 nm, ɛ = 1800 L mol−1 cm−1) is (5.0±0.5)·107 L mol−1 s−1. In the reaction with the hydrogen ion (k = 1.1·107 L mol−1 s−1), the radical HOOC-COO· is transformed into a nonidentified radical designated arbitrarily as H+(HOOC-COO)· (λmax = 260 nm, ɛ = 4000 L mol−1 cm−1). Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1165–1167, June, 2008.  相似文献   

10.
Scavenging of reactive oxygen radicals by resveratrol: antioxidant effect   总被引:3,自引:0,他引:3  
Pulse radiolysis of resveratrol was carried out in aqueous solutions at pH ranging from 6.5 to 10.5. The one-electron oxidized species formed by the N3 radicals at pH 6.5 and 10.5 were essentially the same with λmax at 420 nm and rate constant varying marginally (k = (5−6.5) × 109 dm3 mol−1 s−1). The nature of the transients formed by NO2, NO radical reaction at pH 10.5 was the same as that with N3, due to the similarity in decay rates and the absorption maximum. Reaction of OH radical with resveratrol at pH 7 gives an absorption maximum at 380 nm, attributed to the formation of carbon centered radical. The repair rates for the thymidine and guanosine radicals by resveratrol were approx. 1 × 109 dm3 mol−1 s−1, while the repair rate for tryptophan was lower by nearly an order of magnitude (k = 2 × 108 dm3 mol−1 s−1). The superoxide radical anion was scavenged by resveratrol, as well as by the Cu–resveratrol complex with k = 2 × 107 and 1.5 × 109 dm3 mol−1 s−1, respectively. Its reduction potential was also measured by cyclic voltammetry.  相似文献   

11.
The OH and the NO2 radicals generated pulse radiolytically in N2O-saturated aqueous solution at pH 8–8.5 oxidize Mesna to form the corresponding thiyl radicals which on reaction with thiolate ions form an RSSR type of transient with λmax = 420 nm. The rate constants for the formation of these transients were determined. In the absence of O2 at pH=6, the RS radicals formed show an absorption maximum at 360 nm and an ε=200±50 dm3 mol−1 cm−1. The rate constant k (OH+RSH) was 6×109 dm3 mol−1 s−1 as determined from competition kinetics. In the presence of O2 the Mesna thiyl radical was seen to rapidly add oxygen to form an RSOO type of species with λmax = 535 nm, ε=700±50 dm3 mol−1 cm−1 and k (RS+O2)=1.3×108 dm3 mol−1 s−1. Both the RS and the RSOO radicals formed by the oxidation of Mesna were able to abstract H-atoms from ascorbate ions and k(RS +AH)=~k(RSOO+AH)=~6−7×108 dm3 mol−1 s−1-. Moderately strong oxidants like CCl3OO and the (CH3)3CO radicals, having a reduction potential of +1.4−1.6 V vs NHE were unable to oxidize Mesna. The results thus reflect on the pro- and anti-oxidant properties of Mesna.  相似文献   

12.
The electronic absorption spectra of palladium(II) diacetate (PDA) complexes with phosphines and sulfides (D) with the composition Pd(OAc)2 · 2D (1: 2) contain an intense charge transfer band at λmax ∼ 300 nm (ɛ ∼ 15 000) and do not absorb in the region of 400 nm. Polynuclear compounds such as PDA trimer [Pd(OAc)2]3, trimer complexes with D, and four- and six-membered palladium metallocyclic compounds formed in the interaction of PDA with mercaptans absorb at longer wavelengths. The electronic absorption spectra of all the palladium polynuclear compounds (clusters) contain bands at λmax ∼ 400 nm (ɛ ∼ 1000). The appearance of these bands in the spectra of palladium clusters is evidence of the formation of chemical bonds between neighboring Pd atoms, although Pd…Pd distances substantially exceed the sum of the covalent radii of palladium atoms.  相似文献   

13.
Fullerenyl radicals (FR) RC60 · and chemiluminescence (CL) are generated in the presence of O2 in C60—R3Al (R = Et, Bui) solutions in toluene (T = 298 K). The FR are formed due to the addition of the R· radical, which is an intermediate of R3Al autooxidation, to C60. Mass spectroscopy and HPLC were used to identify EtnC60Hm (n, m = 1–6), EtpC60 (p = 2–6), and dimer EtC60C60Et as stable products of FR transformations. As found by ESR, the EtC60 · radical (g = 2.0037) is also generated by photolysis of solutions obtained after interaction in the (C60— R3Al)—O2 system. In the presence of dioxygen, the FR is not oxidized but yields complexes with O2, which appear as broadening of the ESR signals. Chemiluminescence arising in the (C60—R3Al)—O2 system is much brighter (I max = 1.86·108 photon s−1 mL−1) than the known background CL (I max = 6.0·106 photon s−1 mL−1) for the autooxidation of R3Al and is localized in a longer-wavelength spectral region (λmax = 617 and 664 nm). This CL is generated as a result of energy transfer from the primary emitter 3CH3CHO* to the products of FR transformation: RnC60Hm, RpC60, and EtC60C60Et. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 205–213, February, 2007.  相似文献   

14.
The reactions of e aq, H-atoms, OH radicals and some one electron oxidants and reductants were studied with dithio-oxamide (DTO) in aqueous solutions using pulse radiolysis technique. The transient species formed by the reaction of e aq with DTO at pH 6.8 has an absorption band with λ max at 380 nm and is reducing in nature. H-atom reaction with DTO at pH 6.8 also produced the same transient species. The semi-reduced species was found to be neutral indicating that the electron adduct gets protonated quickly. However at pH 1, the species produced by H-atom reaction had a different spectrum with λ max at 360 and 520 nm. Reaction of acetone ketyl radicals and CO2 radicals with DTO at pH 6.8 gave transient spectra which were identical to that obtained by e aq reaction. However at pH 1, the spectrum obtained by the reaction of acetone ketyl radicals with DTO was similar to that obtained by H-atom reaction at that pH. The transient species formed by OH radical reaction with DTO in the pH range 1–9.2 also has two absorption maxima at 360 and 520 nm. This spectrum was identical with the spectrum obtained by H-atom reaction at pH 1. This means that all these radicals viz. OH, H-atom and (CH3)2COH radicals react with DTO at pH 1 by H-abstraction mechanism. The transient species produced was found to be sensitive to the presence of oxygen. One-electron oxidizing radicals such as Br2 −· and SO4 −· radicals reacted with DTO at neutral pH to give the same species as produced by OH radical reaction having absorption maxima at 360 to 520 nm. At acidic pHs, only Br2 −· and Cl2 −· radicals were able to oxidize DTO to give the same species as produced by OH radical reaction. The semioxidized species is a resonance stabilized species with the electron delocalized over the-N-C-S bond. This species was found to be neutral and non-oxidizing in nature.  相似文献   

15.
Axial coordination of fullerenopyrrolidine bearing the donor imidazolyl group, cis-3-(4-imidazolylphenyl)-1-(pyridin-2-yl)[60]fullereno[1,2-c]pyrrolidine (C60∼Im), with zinc meso-tetraphenylporphyrinate (ZnTPP) in an o-dichlorobenzene solution affords a non-covalently bonded donor-acceptor dyad ZnTPP-C60∼Im. The photochemical behavior of the ZnTPP-C60∼Im complex was studied by fluorescence (excitation at λ = 420 nm) and laser kinetic spectroscopy (excitation at λ = 532 nm, 12 ns). The formation constant of the 1: 1 porphyrin-fullerenopyrrolidine complex determined from quenching of ZnTPP fluorescence assuming static intracomplex quenching is 1.6·104 L mol−1. Absorption spectra of the excited states in the system consisting of ZnTPP and Im∼C60 (ZnTPP/C60∼Im) were measured in solution from 380 to 1000 nm. The quenching constant of the triplet-excited ZnTPP with fullerenopyrrolidine C60∼Im was determined. The results obtained indicate the formation of the triplet exciplex {PL}* ⇌ {Pδ+…Lδ−} in the ZnTPP/C60∼Im system upon laser photolysis. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1541–1547, September, 2006.  相似文献   

16.
A spectral-luminescent study of the keto-enol tautomerism of 5-fluorouracil (FU) has been performed. A discrepancy between the absorption and fluorescence (FL) excitation spectra of aqueous FU solutions (pH 7) has been established. Photoexcitation at the long-wavelength band (340 nm) of the FU excitation spectrum made it possible to detect the fluorescence of its dienol tautomer (λmax = 440 nm). The quenching of tryptophan fluorescence (K = 15 × 103 l/mol) and blood fluorescence by 5-fluorouracil has been investigated.  相似文献   

17.
The formation of neutral Tl2max = 390 nm) and Tl4max = 360 nm) clusters in dilute aqueous solutions of Tl2SO4 containing formate ions was found by pulse radiolysis. The rate constants for the recombination of Tl0 atoms and Tl2 clusters are equal to 1.5·1010 L mol−1 s−1 and 1.0·1010Lmol−1 s−1 (±30%), respectively, and the extinction coefficient of Tl2 at 390 nm is −6.0·103 L mol−1 cm−1 Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2367–2369, December, 1999.  相似文献   

18.
At near neutral pH (approx. 5.5), the OH-adduct of chlorogenic acid (CGA), formed on pulse radiolysis of N2O-saturated aqueous CGA solutions (λ max = 400 and 450 nm) with k = 9 × 109 dm3 mol−1 s−1, rapidly eliminates water (k = 1 × 103 s−1) to give a resonance-stabilized phenoxyl type of radical. Oxygen rapidly adds to the OH-adduct of CGA (pH 5.5) to form a peroxyl type of radical (k = 6 × 107 dm3 mol−1 s−1). At pH 10.5, where both the hydroxyl groups of CGA are deprotonated, the rate of reaction of · OH radicals with CGA was essentially the same as at pH 5.5, although there was a marked shift in the absorption maximum to approx. 500 nm. The CGA phenoxyl radical formed with more specific one-electron oxidants, viz., Br 2 ·− and N 3 · radicals show an absorption maximum at 385 and 500 nm, k ranging from 1–5.5 × 109 dm3 mol−1 s−1. Reactions of other one-electron oxidants, viz., NO 2 · , NO· and CCl3OO· radicals, are also discussed. Repair rates of thymidine, cytidine and guanosine radicals generated pulse radiolytically at pH 9.5 by CGA are in the range of (0.7–3) × 109 dm3 mol−1 s−1.  相似文献   

19.
Pulse radiolysis of 2-Mercaptobenzothiazole (2-MBT) has been undertaken in aqueous solution. The semi-oxidized species formed at pH 4.5 due to the reaction of OH, Br2 •− and N3 and at pH 10.5 with OH yielded a spectrum with λmax = 348 and 595 nm. These semi-oxidized species were able to oxidize phenothiazine drugs (Eo⋟0.8 V). Reducing species such as eaq , CO2 •− and H atoms react with 2-MBT resulting in the formation of a transient having λmax = 350 nm and reducing in nature. Kinetic and spectroscopic data of interest are reported.  相似文献   

20.
For the first time the interactions between zinc(II)tetra-4-alkoxybenzoyloxiphthalocyanine (Zn(4—O—CO—C6H4—OC11H23)Pc) and 1,4-diazabicyclo[2.2.2]octane (DABCO) in o-xylene and chloroform have been studied by calorimetric titration and NMR and electron absorption spectroscopic methods. It has been found that in o-xylene at concentrations of Zn(4—O—CO—C6H4—OC11H23)Pc higher than 6×10−4 mol⋅L−1 ππ dimers species are formed (λ max= 685 nm). Additions of DABCO to the solution up to mole ratio 1 : 8 (Zn(4—O—CO—C6H4—OC11H23)Pc : DABCO) lead to a shift of the aggregation equilibrium towards monomer species due to formation of monoligand axial complexes. Further increasing the DABCO concentration results in formation of Zn(4—O—CO—C6H4—OC11H23)Pc—DABCO—Zn(4—O—CO—C6H4—OC11H23)Pc sandwich dimers (λ max= 675 nm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号