首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
本文从分析电子自旋磁矩(磁极)的空间性质入手,讨论了电子的可区分性.通过讨论2个电子自旋组态的8种形式,其中,包括4种磁极吸引的耦合态、4种磁矩排斥的非耦合态,同理,电子轨旋运动也存在4种耦合态.自旋耦合、轨旋全耦合需要8个电子,所以元素周期性为8音律.磁矩耦合是形成化学键的第一要求,第二才是异核吸引作用;化学键的广义表达语言应该是:化学键只能由磁矩耦合的电子组成.对电子的波粒二象性和测不准原理进行了新的理论解释,并讨论了波粒二象性和测不准现象的物理模型.该模型与电子的微观可区分性相一致.  相似文献   

2.
焦克芳 《化学教育》2001,22(7):9-12
本文从分析电子自旋磁矩(磁极)的空间性质入手,讨论了电子的可区分性。通过讨论了2个电子自旋组态的8种形式,其中,包括4种磁极吸引的耦合态、4种磁矩排斥的非耦合态,同理,电子转变运动也存在4种耦合态。自旋耦合、轨旋全耦合需要8个电子,所以元素周期性为8音律。磁矩耦合是形成化学键的第一要求,第二才是异核吸引作用;化学键的广义表达语言应该是:化学键只能由磁矩耦合的电子组成。对电子的波粒二象性和测不准原理进行了新的解释,并讨论了波粒二象性和测不准现象的物理模型。该模型与电子的微观可分区性相一致。  相似文献   

3.
应用量子化学中高等级的多参考组态相互作用方法计算了环境科学中重要的分子离子BrCl^+的基态和低激发态的势能曲线与光谱常数,详细分析了旋轨耦合作用对电子结构和光谱性质的影响,确认了基态X^2П和低激发电子态的多组态特征,得到了基态X^2П的旋轨耦合分裂能1814cm^-1,与实验值2070cm^-1接近。预测了^2П(Ⅱ)态的旋轨耦合分裂能为766cm^-1。估算了3/2(Ⅲ)-X3/2和1/2(Ⅲ)-1/2(I)跃迂的偶极跃迁矩和Frank-Condon因子,讨论了它们的跃迁辐射寿命。  相似文献   

4.
应用量子化学中高等级的多参考组态相互作用方法计算了环境科学中重要的分子离子BrCl 的基态和低激发态的势能曲线与光谱常数,详细分析了旋轨耦合作用对电子结构和光谱性质的影响,确认了基态X2Π和低激发电子态的多组态特征,得到了基态X2Π的旋轨耦合分裂能1814cm-1,与实验值2070cm-1接近.预测了2Π(Ⅱ)态的旋轨耦合分裂能为766cm-1.估算了3/2(Ⅲ)-X3/2和1/2(Ⅲ)-1/2(Ⅰ)跃迁的偶极跃迁矩和Frank-Condon因子,讨论了它们的跃迁辐射寿命.  相似文献   

5.
本文应用相对论赝势从头计算方法,在不同基组水平上,系统地研究了卤化汞(HgX_2,X=Cl,Br,I)系列的电子结构。表明除Hg的6s主要参与成键外,5dz~2也起了重要的作用。并且随卤素原子序的增加,π成键作用也增强。同时还应用单电子自旋-轨道耦合方法,研究了旋-轨耦合效应的影响,并指定了该系列化合物的光电子能谱。  相似文献   

6.
本文应用相对论赝势从头计算方法, 在不同基组水平上, 系统地研究了卤化汞(HgX_2, X=Cl,Br,I)系列的电子结构。表明除Hg的6s主要参与成键外, 5dz~2也起了重要的作用。并且随卤素原子序的增加, π成键作用也增强。同时还应用单电子自旋-轨道耦合方法, 研究了旋-轨耦合效应的影响, 指定了该系列化合物的光电子能谱。  相似文献   

7.
采用我们最近发展的含旋轨耦合的运动方程耦合簇计算电离能(EOMIP-CC)方法,在CCSD级别上计算了硫族铅化物PbS、PbSe、PbTe阳离子低电子态的平衡键长和谐振频率以及绝热和垂直电离能,得到的结果与已有的实验值吻合较好.不考虑旋轨耦合(SOC)的情况下通过与CCSD(T)的计算结果比较,考察了三重激发对计算结果的影响,结果显示考虑三重激发的贡献后得到的键长和频率结果与实验值吻合更好.计算结果表明PbTe+中2Π态的能量分裂明显大于PbS+和PbSe+中2Π态的能量分裂,但是PbTe+中2Π1/2和2Σ1/2态之间的相互耦合则明显弱于PbS+和PbSe+中这两个态之间的耦合.PbTe+中2Π1/2和2Σ1/2态之间耦合很弱,一方面是因为2Σ+态和2Π态的能量差比PbS+和PbSe+中2Σ+态和2Π态的能量差大,另一方面还由于PbTe+中2Π1/2和2Σ1/2态之间的旋轨耦合矩阵元只是PbS+和PbSe+中2Π1/2和2Σ1/2态之间的旋轨耦合矩阵元的一半.这些计算结果为PbS+、PbSe+、PbTe+阳离子的低电子态性质提供了新的理论数据,可以为将来的实验数据提供参考.  相似文献   

8.
构建含镧系稀土金属离子的分子基磁性材料是当前分子磁学研究的重要领域之一.本文按照单稀土离子,稀土离子-稀土离子(4f-4f)相互作用体系,稀土离子.过渡金属离子(4f-3d)相互作用体系,稀土离子.自由基(4f-p)相互作用体系的顺序,介绍了含镧系稀土金属离子的单离子磁体,基于稀土金属离子,过渡金属离子和自由基多核簇的单分子磁体、单链磁体和磁有序体系的磁学性质.根据磁性分子材料中自旋载体和磁耦合性质的不同,分别用实例介绍了磁耦合、磁有序和磁驰豫性质的特点和来源.首先,本文综述了孤立的单稀土离子配合物体系的结构和磁学性质.由于稀土金属离子的4f电子具有强的旋轨耦合作用和较大的磁各向异性,所以有些单稀土离子配合物如双酞菁铽、镝等体系具有慢的磁驰豫行为,其低温下的磁滞回线呈现台阶状,被称为单离子磁体.该类分子基磁性配合物慢磁驰豫性质的来源可以用镧系稀土离子的电子自旋磁矩、轨道磁矩、核自旋磁矩之间的相互作用解释.具有场诱导缓慢磁驰豫行为的单稀土离子配合物是另一类引起关注的磁性分子材料.该类配合物在零场下交流磁化率的虚部没有峰值,而在一定的外磁场下,其交流磁化率的虚部出现峰值并具有频率依赖性.这种现象可能可以归因为体系的Kramer简并基态在外场下消除了快的磁驰豫过程,使慢的磁驰豫过程,如Orbach过程成为主导.其次,本文综述了稀土离子的4f电子之间的磁耦合作用和磁学性质.一方面,对于具有4f^7电子构型的含Gd(III)离子配合物,f电子之间的磁耦合作用主要是各向同性磁交换作用.由于4f电子能量很低,同其他稀土离子f电子之间的耦合作用被外层轨道屏蔽,所以磁耦合常数很小,无法形成磁有序的结构;另一方面,对于有强旋轨耦合作用的非4f^7电子构型的稀土离子配合物,由于理论计算和拟合上的困难,其4f电子之间的磁耦合作用的机理研究还很少.值得关注的是,有报道发现Dy3簇合物具有单分子磁体的性质,并且基态几乎是非磁的,其磁性来源主要是丰富的低激发态能谱,也就是说,一般认为的单分子磁体必须具有大的自旋基态并不是发生缓慢磁驰豫行为的必要条件.再次,本文综述了稀土金属离子一过渡金属离子簇合物的磁学性质.由于4f-3d之间的磁耦合作用要远大于4f-4f电子之间的磁耦合作用,所以此类配合物磁学性质和磁构关系的研究相对较多,其磁学性质也相对丰富.由于Gd离子和Cu离子的旋轨耦合作用较小,理论计算和磁性数据的拟合相对简单,所以对于磁构关系和磁耦合性质的研究主要集中在Gd—Cu体系.对于存在强旋轨耦合作用的其他镧系稀土离子,可能出现磁有序,慢的磁驰豫等其他磁学现象.实验上也合成了一些基于4f-3d作用的单分子磁体和单链磁体.此外,本文还综述了稀土金属离子.自由基体系的磁学性质.对于自由基与稀土金属离子之间的耦合,由于不需要通过抗磁性的其他原子,所以可能产生比4f-4f,4f-3d体系更强的磁耦合作用.实验上,也的确发现了一些具有磁有序行为的4f-自由基分子磁性材料,但磁有序主要发生在低温区.最后,对稀土分子基磁性材料研究中需要解决的问题和未来发展前景进行了展望.  相似文献   

9.
通常要用多参考态方法才能合理处理需考虑旋轨耦合(SOC)效应的开壳层分子如AuO和AuS的低电子态.事实上,通过选取合适的参考态,采用运动方程耦合簇方法(EOM-CC)也能计算这些分子的一些低电子态,而且EOM-CC方法是单参考态方法,使用起来比多参考态方法更加简单.本文采用最近发展的含旋轨耦合的EOM-CC计算电离能的方法(EOMIP-CC),选取对应的负离子为参考态,在CCSD级别上计算了AuO和AuS低电子态的性质.在不考虑旋轨耦合时,通过比较EOMIP-CCSD和EOMIP-CCSDT的结果考察EOMIPCCSD的精度.此外,与EOMIP-CCSDT结果相比,如果自旋污染较为显著而且T1的模较大时,UCCSD(T)方法对能量最低的某一特定对称性的电子态的所对应的电离能误差约为0.1-0.15 eV.在考虑了旋轨耦合效应后,我们的方法得到的键长和振动频率与实验值吻合较好.另一方面,虽然EOMIP-SOC-CCSD高估了能量较高的2Δ3/2态、2Σ+1/2态和2Π1/2态的能量,但是对于其它能量更低的电子态,它们的能量与已有实验值误差在0.2 eV左右.这显示我们所用的含SOC的EOMIP-CCSD方法对原本需要用多参考态方法才能处理的AuO和AuS低电子态能给出可靠的结果.  相似文献   

10.
祝乾  侯香岩  黄科科 《应用化学》2022,39(6):1011-1012
<正>无机功能复合固体是指两个或多个固体通过化学键键合而形成的复合相,与传统单相合成相比,固体复合后发生了晶格畸变、轨道耦合、电子自旋和电荷转移等变化,能够实现材料原有功能的增强甚至产生新的功能。因而,在化学、能源、材料和电子等领域具有广泛的应用。  相似文献   

11.
X‐ray magnetic circular dichroism spectroscopy has been used to characterize the electronic structure and magnetic moment of Cr2+. Our results indicate that the removal of a single electron from the 4sσg bonding orbital of Cr2 drastically changes the preferred coupling of the 3d electronic spins. While the neutral molecule has a zero‐spin ground state with a very short bond length, the molecular cation exhibits a ferromagnetically coupled ground state with the highest possible spin of S=11/2, and almost twice the bond length of the neutral molecule. This spin configuration can be interpreted as a result of indirect exchange coupling between the 3d electrons of the two atoms that is mediated by the single 4s electron through a strong intraatomic 3d‐4s exchange interaction. Our finding allows an estimate of the relative energies of two states that are often discussed as ground‐state candidates, the ferromagnetically coupled 12Σ and the low‐spin 2Σ state.  相似文献   

12.
Adopting the second‐order reduced density matrix level, the conventional α‐ and β‐spin populations in radicals are split into paired and unpaired or electropon (referring to the simultaneous occurrence of an electron and a hole of opposite spins in an orbital) populations. This analysis gives the possibility to distinguish the (un)favorable for chemical bonding electronic interactions by means of positive or negative Coulomb and/or Fermi correlations of two electropons. To overcome the conceptual difficulties originated from the subtle superposition of unpaired electrons due to spin density and those responsible for chemical bonding, we use the notion of properly unpaired electrons. The quantity describing this notion provides a global picture for the ability of electrons of a given orbital to form covalent bonds with the electrons of all remaining orbitals. More detailed information, concerning the behavior of electrons in two distinct target orbitals, is obtained by means of the two‐electropon correlations. As shown, the boundary values of the used quantities are physically meaningful, and the whole theory is tested from various points of view concerning: localized and delocalized radical centers, orthogonal and nonorthogonal orbitals, uncorrelated and correlated levels, Coulomb and Fermi correlations. We also check the electropon based analysis by investigating the spin polarization effects and bond orders in radicals. The tests are achieved for well‐known radicals, and to preserve the stability of the numerical results and the invariance of the obtained conceptual pictures, we used natural basis sets introduced within the natural bond orbital methodology. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
On the basis of density functional theory (DFT) methods, we study the magnetic properties and electronic structures of the armchair (4, 4) and zigzag (8, 0) single-wall SiC nanotubes with various vacancies and boron substitution. The calculation results indicate that a Si vacancy could induce the magnetic moments in both armchair (4, 4) and zigzag (8, 0) single-wall SiC nanotubes, which mainly arise from the p orbital of C atoms surrounding Si vacancy, leading to the ferromagnetic coupling. However, a C vacancy could only bring about the magnetic moment in armchair (4, 4) single-wall SiC nanotube, which mainly originates from the polarization of Si p electrons, leading to the antiferromagnetic coupling. In addition, for both kinds of single-wall SiC nanotubes, magnetic moments can be induced by a boron atom substituting for C atom. When two boron atoms locate nearest neighbored, both kinds of single-wall Si(C, B) nanotubes exhibit antiferromagnetic coupling.  相似文献   

14.
The recent synthesized LaSrVMoO6 was speculated to be compensated half metal, i.e., half metal with zero magnetic moment. Based on the experimental structure, our first principles study indicates that it is ferrimagnetic and half metallic with the magnetic moment 2.0 μB when the electron correlation of Mo 4d electrons is larger than 2.72 eV. This indicates the strong electron correlation effect of Mo 4d electrons. Nonetheless, the obtained large magnetic moment (2.0 μB) contradicts with the experimental observed nearly zero magnetic moment. Although the large antisite defects of the experimental sample might be the reason to reduce the saturated magnetic moment, further physical insights need to be investigated. The spin‐orbit coupling effect has minor effect on the studied properties. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

15.
Clathrate hydrates have appeared as promising icy materials as the radical, high-spin molecule, and even electron clathrate hydrates are found. In particular, dielectron clathrate hydrates are expected to develop as structural units for a novel class of icy magnetic materials because of not only possible spin coupling interaction, but also very sensitive response to electric field of the loosely bound electrons. However, electric field responses concerning the magnetic properties of such hydrates have not been reported so far. In this work, three representative dielectron clathrate hydrate model clusters (e2@4668BB, e2@51262BB, and e2@4668AB) were considered for the exploration of their magnetic spin coupling properties, electron distributions, and energy responses to applied electric field. The results calculated at the density functional theory level show that the energies and electron spin coupling properties of these dielectron clathrate hydrate clusters are quite sensitive to applied electric field, presenting intriguing variations. Most importantly, applied electric field can regulate the strength of spin coupling between two trapped electrons, and even could realize the magnetic interconversion of such dielectron cluster structures between antiferromagnetic and paramagnetic or diamagnetic characteristics. Clearly, the intriguing variations should be attributed to the diffuse character, special mobility and polarizable properties of such trapped electrons, and especially the susceptible redistributions of two electrons (including the electron cloud shape and distance between two electron centers) to the electric field. This work opens up the possibility of designing novel icy magnetic materials with sensitive electric field responses of the magnetic properties.  相似文献   

16.
The usual one‐electron populations in atomic orbitals of closed shell systems are split into unpaired and paired at the (spin‐dependent) second‐order reduced density matrix level. The unpaired electron in an orbital is defined as the “simultaneous occurrence of an electron and an electron hole of opposite spins in the same spatial orbital,” which for simplicity is called “electropon.” The electropon population in a given orbital reveals whether and to what degree the Coulomb correlations, and hence, the chemical bonding between this orbital and the remaining orbitals of the system are globally favorable or unfavorable. The interaction of two electropons in two target orbitals reveals the quality (favorable or unfavorable) and the strength of the covalent bonding between these orbitals; this establish a bridge between the notion of “unpaired electrons” and the traditional covalent structure of valence‐bond (VB) theory. Favorable/unfavorable bonding between two orbitals is characterized by the positive/negative (Coulomb) correlation of two electropons of opposite spins, or alternatively, by the negative/positive (Fermi) correlation of two parallel spin electropons. A spin‐free index is defined, and the relationship between the electropon viewpoint for chemical bonding and the well‐known two‐electron Coulomb and Fermi correlations is established. Benchmark calculations are achieved for ethylene, hexatriene, benzene, pyrrole, methylamine, and ammonia molecules on the basis of physically meaningful natural orbitals. The results, obtained in the framework of both orthogonal and nonorthogonal population analysis methods, provide the same conceptual pictures, which are in very good agreement with elementary chemical knowledge and VB theory. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Ab initio density functional calculations including spin-orbit coupling (SOC) have been performed for Pt(n), n = 2-6 clusters. The strong SOC tends to stabilize planar structures for n = 2-5, whereas for clusters consisting of six atoms, three-dimensional structures remain preferred. SOC leads to the formation of large orbital magnetic moments and to a mixing of different spin states. Due to the spin-mixing the total magnetic moment may be larger or smaller than the spin moment in the absence of SOC. Both spin and orbital moments are found to be anisotropic. Because of the strong SOC the energy differences between coexisting magnetic isomers can be comparable to or even smaller than their magnetic anisotropy energies. In this case the lowest barrier for magnetization reversal can be determined by a magnetic isomer which is different from the ground state configuration.  相似文献   

18.
The nature of the chemical bond in UO2 was analyzed taking into account the X-ray photoelectron spectroscopy (XPS) structure parameters of the valence and core electrons, as well as the relativistic discrete variation electronic structure calculation results for this oxide. The ionic/covalent nature of the chemical bond was determined for the UO8 (D4h) cluster, reflecting uranium's close environment in UO2, and the U13O56 and U63O216 clusters, reflecting the bulk of solid uranium dioxide. The bar graph of the theoretical valence band (from 0 to ~35 eV) of XPS spectrum was built such that it was in satisfactory agreement with the experimental spectrum of a UO2 single crystalline thin film. It was shown that unlike the crystal field theory results, the covalence effects in UO2 are significant due to the strong overlap of the U 6p and U 5f atomic orbitals with the ligand orbitals, in addition to the U 6d atomic orbital (AO). A quantitative molecular orbital (MO) scheme for UO2 was built. The contribution of the MO electrons to the chemical bond covalence component was evaluated on the basis of the bond population values. It was found that the electrons of inner valence molecular orbitals (IVMO) weaken the chemical bond formed by the electrons of outer valence molecular orbitals (OVMO) by 32% in UO8 and by 25% in U63O216.  相似文献   

19.
A new magnetic metal organic framework material has been synthesized, Mn3(C8O4H4)3(C5H11ON)2, 1. Magnetic susceptibility measurements from 2 to 400 K reveal anti-ferromagnetic ordering at approximately 4 K and a total magnetic moment of 6.0 micro(B). The magnetic phase transition is confirmed by heat capacity data (2-300 K). The crystal structure is studied by conventional single-crystal X-ray diffraction data at 300, 275, 250, 225, 200, 175, 150, 125, and 100 K, and synchrotron data at 20 K. There is a phase transition between 100 and 20 K due to ordering of the diethylformamide molecules. The X-ray charge density is determined based on multipole modeling of a second 20 K single-crystal synchrotron radiation data set. The electron distributions around the two unique Mn centers are different, and both have substantial anisotropy. Orbital population analysis reveals large electron donation (1.7 e) to each Mn atom and the maximum possible number of unpaired electrons is 3.2 for both Mn sites. Thus, there is a considerable orbital component to the magnetic moment. Bader topological analysis shows an absence of Mn-Mn bonding, and the magnetic ordering is via super-exchange through the oxygen bridges. Formal electron counting suggests Mn2+ sites, but this is not supported by the Bader atomic charges, Mn1 = +0.11 e, Mn2 = +0.17 e. The topological measures show the dominant metal-ligand interactions to be electrostatic, and a simple exponential correlation is derived between Mn-O bond lengths and the values of nabla2rho at the bond critical points.  相似文献   

20.
Only one electron affinity of oxygen, 43(1) kJ mol−1 is generally cited since the molecular orbital theory anion bond order [3/4] gives an electron affinity, 14 kJ mol−1. However, electron correlation rules predict 27 bonding and 27 antibonding spin orbital coupling states. The relative bond orders (RBOs), 12/13 to [1/4] and the 13 valence electrons of superoxide are used to calculate electron affinities 103 to −243 kJ mol−1 consistent with experimental and theoretical values. These are used to construct 54 ionic Morse potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号