首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Photoactivation in CdSe/ZnS quantum dots (QDs) on UV/Vis light exposure improves photoluminescence (PL) and photostability. However, it was not observed in fluorescent carbon quantum dots (CDs). Now, photoactivated fluorescence enhancement in fluorine and nitrogen co‐doped carbon dots (F,N‐doped CDs) is presented. At 1.0 atm, the fluorescence intensity of F,N‐doped CDs increases with UV light irradiation (5 s–30 min), accompanied with a blue‐shift of the fluorescence emission from 586 nm to 550 nm. F,N‐doped CDs exhibit photoactivated fluorescence enhancement when exposed to UV under high pressure (0.1 GPa). F,N‐doped CDs show reversible piezochromic behavior while applying increasing pressure (1.0 atm to 9.98 GPa), showing a pressure‐triggered aggregation‐induced emission in the range 1.0 atm–0.65 GPa. The photoactivated CDs with piezochromic fluorescence enhancement broadens the versatility of CDs from ambient to high‐pressure conditions and enhances their anti‐photobleaching.  相似文献   

2.
The temperature‐dependent photophysical properties of a series of 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) derivatives with different oligo(ethylene glycol) (OEG) dendrons were investigated. Weak fluorescence emission was observed for these BODIPY derivatives in dilute solution with low viscosity. BDP‐G0 and BDP‐G1‐TEG exhibit a high quantum yield in viscous glycerol solutions, contrary to the moderate and little fluorescence enhancement for BDP‐G1 and BDP‐G2 under the same conditions. The photoinduced electron transfer (PET) may have quenched the fluorescence, as supported by calculation. Interestingly, the thermoresponsive BODIPY derivatives show heat‐induced luminescence enhancement with a high signal‐to‐noise ratio and their emission maxima are dependent on the structures of branched tri(ethylene glycol) moieties. Finally, preliminary studies on the BODIPY derivatives as intracellular fluorescence indicators in living HeLa cells were carried out.  相似文献   

3.
1‐Cyano‐1,2‐bis(biphenyl)ethene (CNBE) derivatives with a hexa(ethylene glycol) group as an amphiphilic side chain were synthesized and the self‐assembling character and fluorescence behavior were investigated. The amphiphilic derivatives showed aggregate‐induced enhanced emission (AIEE) in water and in the solid state. The fluorescence quantum yield increased as the rigidity of the aggregates increased (i.e., in ethyl acetate<in water<in the solid state). As determined from measurements of fluorescence spectra, fluorescence quantum yields, and fluorescence lifetimes, a key factor for the enhanced emission is suppression of the nonradiative decay process arising from restricted molecular motion. Additionally, the difference in the emission rate constant is not negligible and can be used to interpret the difference in fluorescence quantum yield in water and in the solid state.  相似文献   

4.
Redox reactions are central to energy conversion and life metabolism. Herein we present electrochemical measurements with fluorescent readout of the redox‐sensitive dye Methylene Blue (MB), at the single‐molecule (SM) level. To overcome the low fluorescence quantum yield of MB we enhanced fluorescence by using individual gold nanorods to achieve the required sensitivity. By measuring the same molecule at different electrochemical potentials we determined the mid‐point potential of each single molecule through its redox‐induced fluorescence blinking dynamics.  相似文献   

5.
Matrix‐assisted laser desorption/ionization (MALDI) is a soft ionization technique that when used to analyze synthetic polymer analytes often requires the addition of a metal cationization agent (herein termed the “salt”). The choice of both the matrix and the cationization agent needs to be taken into account when considering the polymer under study; different polymers have shown different affinities toward different cationization agents, and their selectivity can change as the matrix changes. Salt‐to‐analyte ratio (S/A) plots are used in this work to investigate the effect of the quantity of cationization agent employed in the analysis of a poly (methylmethacrylate) (PMMA) analyte with different MALDI matrices. The point at which analyte signal stops increasing with the added cationization agent is termed the “cation saturation point,” and it was found to occur around a S/A of 1. When the analyte signal after this point remains constant, it is termed an “ideal case.” The “non‐ideal case” occurs when the analyte signal decreases after the cation saturation point. The amount of matrix present (measured as the matrix‐to‐analyte molar ratio, M/A) and the use of different counterions for the salt are also found to affect the intensity of the analyte signal. In non‐ideal cases, changes in the counterion or an increase in the M/A are found to increase the analyte signal, often converting an initially observed non‐ideal case into an ideal case. Several experiments attempting to uncover the reason for observation of the non‐ideal S/A behavior are also described.  相似文献   

6.
研究了黄豆黄素和黄豆黄苷在不同pH条件下的吸收光谱和荧光光谱, 从分子结构的角度解释了二者呈现不同光谱特征的原因. 黄豆黄素分子基本无荧光. 在弱碱性时, 黄豆黄素分子发生7-OH质子的电离, 导致吸收光谱中320 nm的吸收峰红移至348 nm. 采用pH-光度法测得7-OH质子的电离常数pKa1=7.08±0.04. 黄豆黄素一价阴离子呈现较强荧光, 最大激发和发射波长λex/λem分别为334 nm/464 nm, 荧光量子产率为0.049. 在碱性溶液中, 黄豆黄素4'-OH质子电离, 导致吸收光谱中254 nm的吸收峰红移至260 nm, 电离常数pKa2=9.96±0.01. 黄豆黄苷分子基本无荧光. 在碱性条件下, 黄豆黄苷分子的4'-OH质子发生电离, 导致吸收光谱中256 nm的吸收峰红移至 280 nm, 电离常数pKa=9.81±0.03. 黄豆黄苷阴离子基本无荧光, 但在热碱性条件下发生γ-吡喃酮环裂解反应而产生较强荧光, λex/λem为288 nm/388 nm, 裂解产物的荧光量子产率为0.056. 虽然, 黄豆黄苷与黄豆黄素是苷与苷元的关系, 但黄豆黄苷不能在热碱性条件下通过糖苷水解转变为黄豆黄素, 二者的荧光增强机理存在本质不同.  相似文献   

7.
《化学:亚洲杂志》2017,12(2):233-238
Unsymmetrical cyanine dyes, such as thiazole orange, are useful for the detection of nucleic acids with fluorescence because they dramatically enhance the fluorescence upon binding to nucleic acids. Herein, we synthesized a series of unsymmetrical cyanine dyes and evaluated their fluorescence properties. A systematic structure–property relationship study has revealed that the dialkylamino group at the 2‐position of quinoline in a series of unsymmetrical cyanine dyes plays a critical role in the fluorescence enhancement. Four newly designed unsymmetrical cyanine dyes showed negligible intrinsic fluorescence in the free state and strong fluorescence upon binding to double‐stranded DNA (dsDNA) with a quantum yield of 0.53 to 0.90, which is 2 to 3 times higher than previous unsymmetrical cyanine dyes. A detailed analysis of the fluorescence lifetime revealed that the dialkylamino group at the 2‐position of quinoline suppressed nonradiative decay in favor of increased fluorescence quantum yield. Moreover, these newly developed dyes were able to stain the nucleus specifically in fixed HeLa cells examined by using a confocal laser‐scanning microscope.  相似文献   

8.
Photoactivation in CdSe/ZnS quantum dots (QDs) on UV/Vis light exposure improves photoluminescence (PL) and photostability. However, it was not observed in fluorescent carbon quantum dots (CDs). Now, photoactivated fluorescence enhancement in fluorine and nitrogen co-doped carbon dots (F,N-doped CDs) is presented. At 1.0 atm, the fluorescence intensity of F,N-doped CDs increases with UV light irradiation (5 s–30 min), accompanied with a blue-shift of the fluorescence emission from 586 nm to 550 nm. F,N-doped CDs exhibit photoactivated fluorescence enhancement when exposed to UV under high pressure (0.1 GPa). F,N-doped CDs show reversible piezochromic behavior while applying increasing pressure (1.0 atm to 9.98 GPa), showing a pressure-triggered aggregation-induced emission in the range 1.0 atm–0.65 GPa. The photoactivated CDs with piezochromic fluorescence enhancement broadens the versatility of CDs from ambient to high-pressure conditions and enhances their anti-photobleaching.  相似文献   

9.
In this study, we investigated the increase in photosynthetic quantum yield that occurs in advance of increased microalgal growth. Haematococcus pluvialis was cultivated under normal conditions; the number of cells, the maximum quantum yield of photosystem II (F(v)/F(m)), and optical density were measured. We observed an increase in F(v)/F(m) approximately 72h prior to the cell growth phase. To confirm the relationship between photosynthetic yield and growth, samples were treated with several chemicals under high-intensity light illumination and control conditions to inhibit photosystem II and induce a decrease in the quantum photosynthetic yield. The samples were exposed to high-intensity light at an irradiance of 400μmol photonsm(-2)s(-1) for varied amount of time and were treated with chemicals such as 3-(3,4-dichlorophenyl)-1,1-dimethylurea, nigericin sodium salt and valinomycin. We observed that both the photooxidation of photosystem II reaction centers and the formation of transmembrane electrochemical gradients led to an initial decrease in fluorescence yield after the onset of high-intensity light illumination. We also observed that treatment of high-intensity light illuminated cells with antibiotics after adaptation to moderate light intensities caused a difference in photosynthetic activity. In conclusion, the maximum quantum yield of photosystem II is obtained prior to the cell growth phase and can therefore be used as a prediction parameter for cell growth.  相似文献   

10.
铝试剂的荧光光谱与荧光量子产率   总被引:4,自引:0,他引:4  
首次研究了铝试剂的荧光光谱和荧光量子产率,发现pH3至pH12条件下,用紫外光照射铝试剂溶液可以产生荧光,最大激发波长和最大发射波长分别为297nm和409nm,荧光强度与铝试剂浓度之间存在良好的线性关系,线性范围为0.01~3μg/mL,检测下限为0.01μg/mL,以硫酸奎宁为参比,测得铝试剂的荧光量子产率为0.16。  相似文献   

11.
Developing luminescent probes with long lifetime and high emission efficiency is essential for time‐resolved imaging. However, the practical applications usually suffer from emission quenching of traditional luminogens in aggregated states, or from weak emission of aggregation‐induced emission type luminogens in monomeric states. Herein, we overcome this dilemma by a rigid‐and‐flexible alternation design in donor–acceptor–donor skeletons, to achieve a thermally activated delayed fluorescence luminogen with high emission efficiency both in the monomeric state (quantum yield up to 35.3 %) and in the aggregated state (quantum yield up to 30.8 %). Such a dual‐phase strong and long‐lived emission allows a time‐resolved luminescence imaging, with an efficiency independent of probe pretreatment and probe concentration. The findings open opportunities for developing luminescent probes with a usage in larger temporal and spatial scales.  相似文献   

12.
Compounds displaying delayed fluorescence (DF), from severe concentration quenching, have limited applications as nondoped organic light‐emitting diodes and material sciences. As a nondoped fluorescent emitter, aggregation‐induced emission (AIE) materials show high emission efficiency in their aggregated states. Reported herein is an AIE‐active, DF compound in which the molecular interaction is modulated, thereby promoting triplet harvesting in the solid state with a high photoluminescence quantum yield of 93.3 %, which is the highest quantum yield, to the best of our knowledge, for long‐lifetime emitters. Simultaneously, the compound with asymmetric molecular structure exhibited strong mechanoluminescence (ML) without pretreatment in the solid state, thus exploiting a design and synthetic strategy to integrate the features of DF, AIE, and ML into one compound.  相似文献   

13.
Compounds displaying delayed fluorescence (DF), from severe concentration quenching, have limited applications as nondoped organic light‐emitting diodes and material sciences. As a nondoped fluorescent emitter, aggregation‐induced emission (AIE) materials show high emission efficiency in their aggregated states. Reported herein is an AIE‐active, DF compound in which the molecular interaction is modulated, thereby promoting triplet harvesting in the solid state with a high photoluminescence quantum yield of 93.3 %, which is the highest quantum yield, to the best of our knowledge, for long‐lifetime emitters. Simultaneously, the compound with asymmetric molecular structure exhibited strong mechanoluminescence (ML) without pretreatment in the solid state, thus exploiting a design and synthetic strategy to integrate the features of DF, AIE, and ML into one compound.  相似文献   

14.
Matousek JP 《Talanta》1977,24(5):315-319
A novel approach to sample deposition in furnace atomization is suggested, which obviates the need for skilled application of microvolumes by syringe. The analyte in aerosol form is deposited under controlled conditions on the internal surface areas of graphite furnaces. Precision approaching that of flame atomization systems is achieved and at the same time, concentrational sensitivity may be increased simply by extending the deposition time. The amount of analyte deposited in the furnace is restricted only by the sample volume available and the matrix concentration. A single standard can be used to construct a calibration curve by simply varying the aerosol deposition time.  相似文献   

15.
Multi‐resonance induced by boron and nitrogen atoms in opposite resonance positions endows a thermally activated delayed fluorescence (MR‐TADF) emitter with a strikingly small full width at half maximum of only 26 nm and excellent photoluminescence quantum yield of up to 97.48 %. The introduction of a carbazole unit in the para position of the B‐substituted phenyl‐ring can significantly boost up the resonance effect without compromising the color fidelity, subsequently enhancing the performances of the corresponding pure blue TADF‐OLED, with an outstanding external quantum efficiency (EQE) up to 32.1 % and low efficiency roll‐off, making it one of the best TADF‐OLEDs in the blue region to date. Furthermore, utilizing this material as host for a yellow phosphorescent emitter, the device also shows a significantly reduced turn‐on voltage of 3.2 V and an EQEmax of 22.2 %.  相似文献   

16.
A series of new conjugated polymers PTPExFy, which consist of tetraphenylethylene (TPE) units and fluorene (F) units, have been designed and synthesized by Suzuki cross‐coupling polymerization. The polymers PTPExFy exhibited aggregation‐induced emission enhancement and dual‐channel fluorescence response (DCFR) when they were aggregated in solution, and these properties are related with their TPE‐to‐F ratio in the polymer backbone. For PTPE and PTPE0.5F0.5 , the fluorescence emission was enhanced by aggregation when water was added into their THF solutions. For the copolymers PTPE0.3F0.7 , PTPE0.2F0.8 , and PTPE0.1F0.9 , the DCFRs were observed when they were aggregated by adding water into their solution, which can be attributed to the different responses of fluorene segments and TPE segments to aggregation. The fluorene segments have an aggregation‐caused quenching characteristic, whereas the TPE segments have an aggregation‐induced emission characteristic. According to the fluorescence lifetime and quantum yield data of the polymer solutions, we have discovered that the polymer's natural life time increases as its TPE content increases. In the solid film, PTPE0.3F0.7 and PTPE0.2F0.8 showed better quantum yield than other polymers, due to the combination of the excellent fluorescent property of the fluorene groups and the nonplanar conformation of the TPE groups. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

17.
The photophysical properties such as electronic absorption, excitation and emission spectra as well as molar absorptivity and fluorescence quantum yield of N,N‐bis(pyrimidenyl)‐3,4,9,10‐perylenetetracarboxylic diimide (PmPBD), N,N‐bis(pyridenyl)‐3,4,9,10‐perylenetetracarboxylic diimide (PyPBD) and N,N‐bis(4‐methylpyridenyl)‐3,4,9,10‐perylenetetracarboxylic diimide (MPyPBD) have been measured in different solvents. Both electronic absorption and fluorescence spectra are not sensitive to medium polarity, while the fluorescence quantum yield ((f) is solvent dependent. Perylene derivatives under investigation undergo molecular aggregation to dimmer or larger aggregates in water. Dye solution in dimethylformmaide (DMF) gives laser emission at 565 nm upon pumping with 337.1 nm nitrogen laser pulse. The excitation energy transfer from 7‐dimethylamino‐4‐methylcoumarine (DMC) to PmPBD has been studied to improve the laser emission of PmPBD. The value of energy transfer rate constant (kET) and critical transfer distance (R0) indicate a F?rster type energy transfer mechanism. There is a large interaction between the perylene compounds under investigation and the hydrated nanoparticles in the excited state therefore the fluorescence quenching rate constant of these derivatives by hydrated iron oxide nanoparticles has a large value.  相似文献   

18.
The doping of carbon quantum dots with nitrogen provides a promising direction to improve fluorescence performance and broaden their applications in sensing systems. Herein we report a one‐pot solvothermal synthesis of N‐doped carbon quantum dots (NCQDs) and the synthesis of a series of NCQDs with different nitrogen contents. The as‐prepared NCQDs were compared with carbon quantum dots (CQDs); the introduction of nitrogen atoms largely increased the quantum yield of NCQDs and highest emission efficiency is up to 36.3 %. The fluorescence enhancement may originate from more polyaromatic structures induced by incorporated nitrogen atoms and protonation of nitrogen atoms on dots. It was found that NCQDs can act as a multifunctional fluorescence sensing platform because they can be used to detect pH values, AgI, and FeIII in aqueous solution. The fluorescence intensity of NCQDs is inversely proportional to pH values across a broad range from 5.0 to 13.5, which indicates that NCQDs can be devised as an effective pH indicator. Selective detection of AgI and FeIII was achieved based on their distinctive fluorescence influence because AgI can significantly enhance the fluorescence whereas FeIII can greatly quench the fluorescence. The quantitative determination of AgI can be accomplished with NCQDs by using the linear relationship between fluorescence intensity of NCQDs and concentration of AgI. The sensitive detection of H2O2 was developed by taking advantage of the distinct quenching ability of FeIII and FeII toward the fluorescence of NCQDs. Cellular toxicity test showed NCQDs still retain low toxicity to cells despite the introduction of a great deal of nitrogen atoms. Moreover, bioimaging experiments demonstrated that NCQDs have stronger resistance to photobleaching than CQDs and more excellent fluorescence labeling performance.  相似文献   

19.
《Analytical letters》2012,45(15):1821-1833
Abstract

Fluorescence spectral properties of pseudouridine, an important biological indicator, have been measured for the first time in this study. The fluorescence quantum yield is maximal in aqueous solution with pH values above 9 with spectral properties characteristic of 5 alkyl substituted uracil derivatives. Chromatographic analysis shows the fluorescence is associated only with the pseudouridine peak. The concentration dependence of fluorescence is linear from 4 to 45 micromolar at pH 11.5. The excitation maximum is about 295 nm and the emission is broad with a maximum at about 390 nm. Addition of pseudouridine to urine extracts gives a linear increase in fluorescence with increasing pseudouridine concentration.  相似文献   

20.
The fluorescence lifetimes of the diphenylketyl radical trapped in ethanol and EPA matrices are 16.8 ± 0.5 and 21.1 ± 0.6 ns, respectively in the temperature region of 77–130 K. The fluorescence quantum yield in ethanol matrix is 0.16 ± 0.6. These values are consistent with the radiative lifetime calculated from the absorption spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号