首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The path layer matrix (or path degree sequence) of a graph G contains quantitative information about all paths in G. Elements (i,j) in this matrix is the number of simple paths in G having initial vertex v, and length j. For every r ≥ 3, pairs of nonisomorphic r-regular graphs having the same path layer matrix are presented.  相似文献   

2.
The path layer matrix (or path degree sequence) of a graph G contains quantitative information about all paths in G. The entry (i,j) in this matrix is the number of simple paths in G having initial vertex v and length j. It was known that there are cubic graphs on 90 vertices having the same path layer matrix (Dobrynin, 1990). A new upper bound for the least order of cubic graphs with the same path layer matrix is presented. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
The path layer matrix (or path degree sequence) of a graph G contains quantitative information about all possible paths in G. The entry (i,j) of this matrix is the number of paths in G having initial vertex i and length j. It is known that there are cubic graphs on 62 vertices having the same path layer matrix (A. A. Dobrynin. J Graph Theory 17 (1993) 1–4). A new upper bound of 36 vertices for the least order of such cubic graphs is established. This bound is realized by cubic graphs without cut‐vertices. © 2001 John Wiley & Sons, Inc. J Graph Theory 38: 177–182, 2001  相似文献   

4.
In this paper we consider the k-fixed-endpoint path cover problem on proper interval graphs, which is a generalization of the path cover problem. Given a graph G and a set T of k vertices, a k-fixed-endpoint path cover of G with respect to T is a set of vertex-disjoint simple paths that covers the vertices of G, such that the vertices of T are all endpoints of these paths. The goal is to compute a k-fixed-endpoint path cover of G with minimum cardinality. We propose an optimal algorithm for this problem with runtime O(n), where n is the number of intervals in G. This algorithm is based on the Stair Normal Interval Representation (SNIR) matrix that characterizes proper interval graphs. In this characterization, every maximal clique of the graph is represented by one matrix element; the proposed algorithm uses this structural property, in order to determine directly the paths in an optimal solution.  相似文献   

5.
Jun-Jie Pan 《Discrete Mathematics》2006,306(17):2091-2096
An isometric path between two vertices in a graph G is a shortest path joining them. The isometric path number of G, denoted by ip(G), is the minimum number of isometric paths needed to cover all vertices of G. In this paper, we determine exact values of isometric path numbers of complete r-partite graphs and Cartesian products of 2 or 3 complete graphs.  相似文献   

6.
An acyclic graphoidal cover of a graph G is a collection ψ of paths in G such that every path in ψ has at least two vertices, every vertex of G is an internal vertex of at most one path in ψ and every edge of G is in exactly one path in ψ. The minimum cardinality of an acyclic graphoidal cover of G is called the acyclic graphoidal covering number of G and is denoted by ηa. A path partition of a graph G is a collection P of paths in G such that every edge of G is in exactly one path in P. The minimum cardinality of a path partition of G is called thepath partition number of G and is denoted by π. In this paper we determine ηa and π for several classes of graphs and obtain a characterization of all graphs with Δ 4 and ηa = Δ − 1. We also obtain a characterization of all graphs for which ηa = π.  相似文献   

7.
A collection of nontrivial paths in a graph G is called a path pile of G, if every edge of G is on exactly one path and no two paths have a common internal vertex. The least number that can be the cardinality of a path pile of G is called the path piling number of G. It can be shown that εν + η where ε, ν and η are respectively the size, the order and the path piling number of G. In this note we characterize structurally the class of all graphs for which the equality of this relation holds.  相似文献   

8.
For a graph A and a positive integer n, let nA denote the union of n disjoint copies of A; similarly, the union of ?0 disjoint copies of A is referred to as ?0A. It is shown that there exist (connected) graphs A and G such that nA is a minor of G for all n??, but ?0A is not a minor of G. This supplements previous examples showing that analogous statements are true if, instead of minors, isomorphic embeddings or topological minors are considered. The construction of A and G is based on the fact that there exist (infinite) graphs G1, G2,… such that Gi is not a minor of Gj for all ij. In contrast to previous examples concerning isomorphic embeddings and topological minors, the graphs A and G presented here are not locally finite. The following conjecture is suggested: for each locally finite connected graph A and each graph G, if nA is a minor of G for all n ? ?, then ?0A is a minor of G, too. If true, this would be a far‐reaching generalization of a classical result of R. Halin on families of disjoint one‐way infinite paths in graphs. © 2002 Wiley Periodicals, Inc. J Graph Theory 39: 222–229, 2002; DOI 10.1002/jgt.10016  相似文献   

9.
It is shown that for any 4-regular graph G there is a collection F of paths of length 4 such that each edge of G belongs to exactly two of the paths and each vertex of G occurs exactly twice as an endvertex of a path of F. This proves a special case of a conjecture of Bondy. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
A coloring of vertices of a graph G is called r-perfect, if the color structure of each ball of radius r in G depends only on the color of the center of the ball. The parameters of a perfect coloring are given by the matrix A = (a ij ) i,j=1 n , where n is the number of colors and a ij is the number of vertices of color j in a ball centered at a vertex of color i. We study the periodicity of perfect colorings of the graphs of the infinite hexagonal and triangular grids. We prove that for every 1-perfect coloring of the infinite triangular and every 1- and 2-perfect coloring of the infinite hexagonal grid there exists a periodic perfect coloring with the same matrix. The periodicity of perfect colorings of big radii have been studied earlier.  相似文献   

11.
Path graphs     
The concept of a line graph is generalized to that of a path graph. The path graph Pk(G) of a graph G is obtained by representing the paths Pk in G by vertices and joining two vertices whenever the corresponding paths Pk in G form a path Pk+1 or a cycle Ck. P3-graphs are characterized and investigated on isomorphism and traversability. Trees and unicyclic graphs with hamiltonian P3-graphs are characterized.  相似文献   

12.
As an extension of the disjoint paths problem, we introduce a new problem which we call the induced disjoint paths problem. In this problem we are given a graph G and a collection of vertex pairs {(s1,t1),…,(sk,tk)}. The objective is to find k paths P1,…,Pk such that Pi is a path from si to ti and Pi and Pj have neither common vertices nor adjacent vertices for any distinct i,j.The induced disjoint paths problem has several variants depending on whether k is a fixed constant or a part of the input, whether the graph is directed or undirected, and whether the graph is planar or not. We investigate the computational complexity of several variants of the induced disjoint paths problem. We show that the induced disjoint paths problem is (i) solvable in polynomial time when k is fixed and G is a directed (or undirected) planar graph, (ii) NP-hard when k=2 and G is an acyclic directed graph, (iii) NP-hard when k=2 and G is an undirected general graph.As an application of our first result, we show that we can find in polynomial time certain structures called a “hole” and a “theta” in a planar graph.  相似文献   

13.
In the following,G denotes a finite group,r(G) the number of conjugacy classes ofG, β(G) the number of minimal normal subgroups ofG andα(G) the number of conjugate classes ofG not contained in the socleS(G). Let Φ j = {G|β(G) =r(G) −j}. In this paper, the family Φ11 is classified. In addition, from a simple inspection of the groups withr(G) =b conjugate classes that appear in ϒ j =1/11 Φ j , we obtain all finite groups satisfying one of the following conditions: (1)r(G) = 12; (2)r(G) = 13 andβ(G) > 1; …; (9)r(G) = 20 andβ(G) > 8; (10)r(G) =n andβ(G) =na with 1 ≦a ≦ 11, for each integern ≧ 21. Also, we obtain all finite groupsG with 13 ≦r(G) ≦ 20,β(G) ≦r(G) − 12, and satisfying one of the following conditions: (i) 0 ≦α(G) ≦ 4; (ii) 5 ≦α(G) ≦ 10 andS(G) solvable.  相似文献   

14.
For a graph G, the Ramsey number r(G) is the smallest natural number p such that given a graph H with p points. H or H? contains a G. An (n,j)-linear forest L is the disjoint union of nontrivial paths, j of which have an odd number of points, and such that the union has n points. If L is an (n,j)-linear forest, then we show that
.  相似文献   

15.
A bar framework G(p) in r-dimensional Euclidean space is a graph G on the vertices 1, 2, . . . , n, where each vertex i is located at point p i in \mathbbRr{\mathbb{R}^r} . Given a framework G(p) in \mathbbRr{\mathbb{R}^r} , a problem of great interest is that of determining whether or not there exists another framework G(q), not obtained from G(p) by a rigid motion, such that ||q i q j ||2 = ||p i p j ||2 for each edge (i, j) of G. This problem is known as either the global rigidity problem or the universal rigidity problem depending on whether such a framework G(q) is restricted to be in the same r-dimensional space or not. The stress matrix S of a bar framework G(p) plays a key role in these and other related problems. In this paper, semidefinite programming (SDP) theory is used to address, in a unified manner, several problems concerning universal rigidity. New results are presented as well as new proofs of previously known theorems. In particular, we use the notion of SDP non-degeneracy to obtain a sufficient condition for universal rigidity, and we show that this condition yields the previously known sufficient condition for generic universal rigidity. We present new results concerning positive semidefinite stress matrices and we use a semidefinite version of Farkas lemma to characterize bar frameworks that admit a nonzero positive semidefinite stress matrix S.  相似文献   

16.
The utility of Fiedler vectors in interrogating the structure of graphs has generated intense interest and motivated the pursuit of further theoretical results. This paper focuses on how the Fiedler vectors of one graph reveal structure in a second graph that is related to the first. Specifically, we consider a point of articulation r in the graph G whose Laplacian matrix is L and derive a related graph G{r} whose Laplacian is the matrix obtained by taking the Schur complement with respect to r in L. We show how Fiedler vectors of G{r} relate to the structure of G and we provide bounds for the algebraic connectivity of G{r} in terms of the connected components at r in G. In the case where G is a tree with points of articulation rR, we further consider the graph GR derived from G by taking the Schur complement with respect to R in L. We show that Fiedler vectors of GR valuate the pendent vertices of G in a manner consistent with the structure of the tree.  相似文献   

17.
Let k be a positive integer, and S a nonempty set of positive integers. Suppose that G is a connected graph containing a path of length k, and that each path P of length k in G is contained in some cycle C(P) of length s ∈ S. We prove that every path of length less than k can be extended to a path of length k in G. This result answers conjectures of Entringer and Reid regarding when certain paths may be extended to cycles.  相似文献   

18.
Let G be a K1,r ‐free graph (r ≥ 3) on n vertices. We prove that, for any induced path or induced cycle on k vertices in G (k ≥ 2r − 1 or k ≥ 2r, respectively), the degree sum of its vertices is at most (2r − 2)(n − α) where α is the independence number of G. As a corollary we obtain an upper bound on the length of a longest induced path and a longest induced cycle in a K1,r ‐free graph. Stronger bounds are given in the special case of claw‐free graphs (i.e., r = 3). Sharpness examples are also presented. © 2001 John Wiley & Sons, Inc. J Graph Theory 36: 131–143, 2001  相似文献   

19.
Let G be an edge-colored graph. The monochromatic tree partition problem is to find the minimum number of vertex disjoint monochromatic trees to cover the all vertices of G. In the authors’ previous work, it has been proved that the problem is NP-complete and there does not exist any constant factor approximation algorithm for it unless P = NP. In this paper the authors show that for any fixed integer r ≥ 5, if the edges of a graph G are colored by r colors, called an r-edge-colored graph, the problem remains NP-complete. Similar result holds for the monochromatic path (cycle) partition problem. Therefore, to find some classes of interesting graphs for which the problem can be solved in polynomial time seems interesting. A linear time algorithm for the monochromatic path partition problem for edge-colored trees is given. Supported by the National Natural Science Foundation of China, PCSIRT and the “973” Program.  相似文献   

20.
A graph G is 3‐domination critical if its domination number γ is 3 and the addition of any edge decreases γ by 1. Let G be a 3‐connected 3‐domination critical graph of order n. In this paper, we show that there is a path of length at least n?2 between any two distinct vertices in G and the lower bound is sharp. © 2002 John Wiley & Sons, Inc. J Graph Theory 39: 76–85, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号