首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In present study, a multiple columns and detectors liquid chromatography system for analysis of global components in traditional Chinese medicines was developed. The liquid chromatography system was consist of three columns, including size exclusion chromatography column, hydrophilic interaction chromatography column, and reversed phase chromato‐graphy column, and three detectors, such as diode array detector, evaporative light scattering detector, and mass spectrometry detector, based on column switching technique. The developed multiple columns and detectors liquid chromatography system was successfully applied to the analysis of global components, including macromolecular (polysaccharides), high (nucleosides and sugars)‐, and low (triterpenes)‐polarity small molecular compounds in Ganoderma, a well‐known Chinese medicinal mushroom. As a result, one macromolecular chromatographic peak was found in two Ganoderma species, 19 components were identified in Ganoderma lucidum (two sugars, three nucleosides, and 14 triterpenes), and four components (two sugars and two nucleosides) were identified in Ganoderma sinense. The developed multiple columns and detectors liquid chromatography system was helpful to understand comprehensive chemical characters in TCMs.  相似文献   

2.
Introduction of solutions of up to several milliliters by on-column injection of large volumes or by coupled HPLC-GC may cause problems with GC detectors (FID, AFID, MS). For instance, dichloromethane forms large amounts of hydrochloric acid and carbon black in FIDs. A column effluent splitter was developed for keeping the major portion of the solvent vapors away from the detector; approximately 99% of the vapor is vented while the remaining 1% of vapor is used for detecting the widths of the solvent peaks. During analysis, the split ratio is reversed by a strong increase of the resistance to the gas flow through the split exit line. The system was used for the determination of di-(2-ethylhexyl)-phthalate (DEHP) in triglyceride matrices of various foods. Direct determination by HPLC is not sufficiently sensitive, whereas direct analysis by GC is hindered by the triglycerides. Solutions of fats or oils were pre-separated on a silica column using dichloro-methanelcyclohexane 1:l with addition of 0.05 % acetonitrile as eluent. The HPLC fraction containing the DEHP was transferred to GC through a loop-type interface using concurrent solvent evaporation. Detection limits were around 0.1 ppm.  相似文献   

3.
High performance liquid chromatography (HPLC) and gas chromatography (GC) are introduced for analysis of polymer lubricants (stearamide, oleamide and erucamide). In the HPLC method, a reverse phase octadecylsilane (ODS) column along with acetonitrile/methanol (60:40) as a mobile phase were used. Detection of analytes was performed by a UV detector at 202 nm. The analysis time was less than 8 min. In the GC method, polar capillary column and flame ionization detector (FID) were used for separations and detection, respectively. The analysis time by GC was longer than HPLC and was about 30 min. Limits of detection, linear range and repeatability of both methods are similar, but determination of oleamide in real samples by HPLC method is difficult due to complexity of the initial part of HPLC chromatogram in polyethylene samples. That problem is not observed in the GC method. Detection limits in both methods for all analytes are lower than 0.003% which are much lower than the amount of lubricants in commercial polymers (0.05–0.2%).  相似文献   

4.
For the first time, a systematic overview deals with the advantages and disadvantages of several stationary phases (polar and non‐polar) and gas chromatographic detectors (flame ionization detector, nitrogen–phosphorus detector and MS) for the determination of 27 amines (aliphatic and aromatic amines and N‐nitrosamines) in water samples. To increase sensitivity (250 mL of sample was eluted with 150 μL of solvent) and matrix elimination, an automatic SPE system was employed prior to GC determination. The best results in terms of resolution and retention times were achieved using a column coated with 5% phenyl‐dimethylpolysiloxane (DB‐5). Capacity factor (k) values for the 27 amines increased with the rise in the polarity of the stationary phase, ranging from 3.0–27.7 and 2.2–14.4 for polar (polyethylene glycol) and non‐polar (DB‐5) columns, respectively. The detection limits of the method were 0.9–9 μg/L for flame ionization detector, 8–95 ng/L for nitrogen–phosphorus detector and 0.2–6.3 ng/L for MS. The precision was similar for the three detectors (RSD, 3.7–6.0%). The GC‐MS method was applied with a high degree of accuracy and precision to determine amines in real samples including tap, river, pond, well, swimming pool and wastewaters.  相似文献   

5.
The responses of four different types of aerosol detectors have been evaluated and compared to establish their potential use as a universal detector in conjunction with ultra high pressure liquid chromatography (UHPLC). Two charged-aerosol detectors, namely Corona CAD and Corona Ultra, and also two different types of light-scattering detectors (an evaporative light scattering detector, and a nano-quantity analyte detector [NQAD]) were evaluated. The responses of these detectors were systematically investigated under changing experimental and instrumental parameters, such as the mobile phase flow-rate, analyte concentration, mobile phase composition, nebulizer temperature, evaporator temperature, evaporator gas flow-rate and instrumental signal filtering after detection. It was found that these parameters exerted non-linear effects on the responses of the aerosol detectors and must therefore be considered when designing analytical separation conditions, particularly when gradient elution is performed. Identical reversed-phase gradient separations were compared on all four aerosol detectors and further compared with UV detection at 200 nm. The aerosol detectors were able to detect all 11 analytes in a test set comprising species having a variety of physicochemical properties, whilst UV detection was applicable only to those analytes containing chromophores. The reproducibility of the detector response for 11 analytes over 10 consecutive separations was found to be approximately 5% for the charged-aerosol detectors and approximately 11% for the light-scattering detectors. The tested analytes included semi-volatile species which exhibited a more variable response on the aerosol detectors. Peak efficiencies were generally better on the aerosol detectors in comparison to UV detection and particularly so for the light-scattering detectors which exhibited efficiencies of around 110,000 plates per metre. Limits of detection were calculated using different mobile phase compositions and the NQAD detector was found to be the most sensitive (LOD of 10 ng/mL), followed by the Corona CAD (76 ng/mL), then UV detection at 200 nm (178 ng/mL) using an injection volume of 25 μL.  相似文献   

6.
GC and HPLC with selective detectors were compared for simultaneous determination of triazine herbicides simazine, atrazine, propazine, terbuthylazine, cyanazine, ametryn, prometryn, and atraton, and of their dealkylated degradation products in soil. The compounds were ultrasonically extracted from spiked agricultural soil samples (organic matter content < 5%) with a 2:1 acetone:n‐hexane mixture. High efficiency of GC capillary column and high selectivity of the thermionic sensitive detector (TSD) and ion trap detector (ITD) made it possible to directly analyse uncleaned soil extracts and determine all 12 compounds in one run. In reversed‐phase HPLC with diode‐array detector (DAD), the co‐elution of soil matrix components interfered with the determination of methylthiotriazines and terbuthylazine. The recovery of triazine compounds, determined by GC‐TSD, from a silty sand soil (organic matter content 1.82%, pH 6.22) spiked at levels of 15–600 ng g–1, were 70–90% (RSD 9–19%), except for deisopropylatraton (38%). GC‐TSD analysis with detection limits of 5–15 ng g–1 for chloro‐ and methylthiotriazines and 30 ng g–1 for methoxytriazines was more sensitive than GC‐MS(ITD). GC analysis with electron capture detection was sensitive for some chlorotriazines, but a reliable compound quantification in complex chromatograms of uncleaned soil of extracts was not possible. For all compounds save didealkylatrazine, HPLC‐DAD was at least two times less sensitive than GC‐TSD. Soil/sediment organic matter, clay and silt content, and pH were identified as matrix characteristics which might affect ultrasonic extraction recovery of a particular compound.  相似文献   

7.
In contrast to the plethora of publications on the separation of fatty acids, analogous studies involving fatty amines are scarce. A recently introduced ionic‐liquid‐based capillary column for GC was used to separate trifluoroacetylated fatty amines focusing on the analysis of a commercial sample. Using the ionic liquid column (isothermal mode at 200°C) it was possible to separate linear primary fatty amines from C12 to C22 chain length in less 25 min with MS identification. The log of the amine retention factors are linearly related to the alkyl chain length with a methylene selectivity of 0.117 kcal/mol for the saturated amines and 0.128 kcal/mol for the mono‐unsaturated amines. The sp2 selectivity for unsaturated fatty amines also could be calculated as 0.107 kcal/mol for the ionic liquid column. The commercial sample was quantified by GC with flame ionization detection (FID). An LC method also was developed with a reversed phase gradient separation using acetonitrile/formate buffer mobile phases and ESI‐MS detection. Native amines could be detected and identified by their single ion monitoring chromatograms even when partial coelution was observed. The analysis of the commercial sample returned results coherent with those obtained by GC–FID and with the manufacturer's data.  相似文献   

8.
STEVENSON Robert 《色谱》2010,28(9):823-825
The detector, as well as being an essential supporting device for the gas chromatography (GC) has also played a critical role in the development of the technique as a whole. The mass spectrometer (MS) is still the commonly praised detector as before. In fact, the information of fragmentation patterns is seldom used in practice, and the GC-MS instrument is even more expensive. For today’s analytical problems, it seems that element specific detectors can and should be used for many applications rather than GC-MS.  相似文献   

9.
A previous paper reported the possibility of using the ratio between the responses of two different specific detectors to a single compound (detector response ratio, DRR) as an identification criterion for that compound, in combination with its retention index. This article gives some applications of DRR in the identification of some pesticides in four different fruits (apples, apricots, strawberries, and peaches) in a range varying from 0.02 to 1.3 ppm, by means of their ECD/FPD DRRs. After clean-up GC analyses were performed on a single column with dual parallel detection; a personal computer system was used for data analysis.  相似文献   

10.
《中国化学会会志》2018,65(6):714-725
A novel dual two‐dimensional (2D) high‐performance liquid chromatography (LC) setup coupled online to an ultraviolet (UV) detector, fluorescence (FL) detector, and ion‐trap mass spectrometer (MS) has been developed for determining the amino acid sequence of short peptides using a novel bottom‐up strategy. Short peptides were electrothermally hydrolyzed to shorter peptides and amino acid enantiomers. The first 2D LC‐UV and FL system was used to separate and identify the produced parent and daughter short peptides and amino acid isomers and enantiomers in the hydrolysate; the second 2D LC‐MS was used to identify the presence of cysteine and obtain the molecular mass signals and N‐terminal peptide fragment ion signals for parent and daughter short peptides. The identified amino acid enantiomers are used to form any possible short peptides by permutation and combination in an order from dipeptide to a tripeptide, to a tetrapeptide, and to even higher short peptides. The correct short peptides are confirmed by comparing the molecular weights of the constituent amino acid enantiomers and the molecular weights of identified short peptides together, with the characteristic N‐terminal peptide fragment ion signals. The amino acid sequence of the dipeptide ester aspartame and the tripeptide glutathione was successfully determined by this method.  相似文献   

11.
A novel universal aerosol-based detector Nano Quantity Analyte Detector – NQAD™, connected with an ultra-performance liquid chromatography system is described. The detector was employed for detection of selected antibiotic compounds – macrolides (oleandomycin, erythromycin, troleandomycin, clarithromycin and roxithromycin) that are hard to detect using classical UV detectors due to the lack of chromophores. The determined lowest detection limits under isocratic conditions for these compounds ranged from 3.0 to 5.4 μg/mL. The suitability of the detector connected with ultra high-performance liquid chromatography in the gradient mode was tested on a more complex mixture containing 12 antibiotics. The detector exhibited full compatibility under both the elution modes when UHPLC separations were achieved in relatively short run times.  相似文献   

12.
Comprehensive gas chromatography is the realization of true continuous multidimensional (dual column) gas chromatography. The key requirement in the comprehensive GC experiment is that the second dimension analysis is completed in a rapid time‐frame compared to the elution of components in the first dimension, and that the two coupled dimensions represent ‘orthogonal’ analyses towards the analytes to be separated. The former normally necessitates pulsing of contiguous segments of each chromatographic band from the first to the second dimensions. The two dimensions should be in fluid communication. The comprehensive GC×GC experiment passes all the column flow from the first column to the second column, leading to no sample loss, but this also requires a suitable method for time‐ or zone‐compression of the band to be pulsed to the second column. The final pulse should be narrow, and should be delivered to the second column quickly. A simple procedure can achieve this using the cryogenic modulator that has been recently described by this group. The system uses a cryogenic trap which can be moved away from the cooled zone of the column faster than 10 ms. A fast‐acting pneumatic ram achieves this performance. The cooled column heats up to the prevailing oven temperature within 10–15 ms. Molecules as volatile as C5 alkanes or small aromatics will be fully retained by the trap within the period of modulation used for GC×GC. The technique is simple to implement and requires no special column connections. Using a gas chromatograph which allows control of external events and can acquire from a detector at 50 Hz or faster, and a timing controller for modulation, the comprehensive result can easily and effectively be achieved.  相似文献   

13.
Summary Several detectors which have a selective response toward nitrogen containing compounds are discussed. Data on sensitivities, detection limits and reproducibility of response are given. The application of chemiluminescence to provide a nitrogen selective GC detector is proposed.  相似文献   

14.
A new capillary high‐performance liquid chromatography method with atmospheric pressure chemical ionization mass spectrometry was developed for the analysis of fatty acid methyl esters and long‐chain alcohols. The chromatographic separation was achieved using a Zorbax SB‐C18 HPLC column (0.3 × 150 mm, 3.5 μm) with a mobile phase composed of acetonitrile and formic acid and delivered isocratically at a flow rate of 10 μL/min. The column temperature was programmed simply, using a common column oven. Good reproducibility of the temperature profile and retention times were achieved. The temperature programming during the isocratic high‐performance liquid chromatography run had a similar effect as a solvent gradient; it reduced retention times of later eluting analytes and improved their detection limits. Two atmospheric pressure chemical ionization sources of the mass spectrometry detector were compared: an enclosed conventional ion source and an in‐house made ion source with a glass microchip nebulizer. The enclosed source provided better detectability of saturated fatty acid methyl esters and made it possible to determine the double bond positions using acetonitrile‐related adducts, while the open chip‐based source provided better analytical figures of merit for unsaturated fatty acid methyl esters. Temperature‐programmed capillary high‐performance liquid chromatography is a promising method for analyzing neutral lipids in lipidomics and other applications.  相似文献   

15.
A large-volume on-column GC–cryotrapping–IR system was developed for injections of up to 100 μl of organic extracts. Considerable reduction of the solvent-and-water background and enhanced analyte detectability was achieved by using an open-split interface between the GC column and the IR detector and improving the leak-tightness of the system. The system was combined with solid-phase extraction to yield on-line SPE–GC–IR. With this set-up, sample volumes of only 20 ml sufficed to detect, and identify, microcontaminants in tap and surface water at the 0.1–1 μg/L level. Detection limits were on the order of 15 ng/L for tap water when using appropriate functional-group chromatograms. Or, in other words, SPE–GC–IR is a suitable technique for the screening of environmental water samples for functional groups, i.e. classes of compounds, of interest.  相似文献   

16.
The writer of this review published in 1978 a three‐part article on two‐dimensional gas chromatography in the first three issues of this journal [1]. The review was written at a time when capillary column GC was still in its infancy. Commercial columns were (essentially) unavailable and sample introduction into capillary columns was done exclusively in the split mode. Two‐dimensional separations were explored in only a few laboratories. The limitations of capillary column technology made this exercise rather difficult. The introduction of fused silica capillary columns in the early eighties drastically changed the landscape in which gas chromatography was practiced. It took the chromatographic community just a few years to convert from packed columns to capillary columns. Instrumentation and accessories specifically designed for capillary column use came onto the market. This writer had great hopes that the revolution in capillary column GC would be mirrored in the development of instrumentation for Two‐Dimensional Gas Chromatography. This never materialized. On the contrary, tentative steps taken by a few manufacturers and suppliers of chromatographic equipment fizzled out. It was perhaps the introduction of relatively inexpensive and user friendly GC/MS instrumentation, in combination with nearly indestructible fused silica capillary columns that took away the incentive to develop commercially viable Two‐Dimensional Gas Chromatography. Much of the thinking went like this: why insist on good chromatography if mass spectrometry can do the job without the need of complete separation. Some progress in the further development of conventional Two‐Dimensional Gas Chromatography has certainly been made over the last 20 years but there has not been a great deal of excitement. Applications have also been relatively sparse and they are limited to just a few areas. Science does not remain static and chromatography is no exception. Progress in gas chromatography is driven by new technology and ideas. Substantial improvements in two‐dimensional GC were not forthcoming until Phillips and his research group introduced and implemented an entirely new form of Two‐Dimensional Gas Chromatography, called comprehensive GC×GC. This breakthrough occurred only in 1991 [2]. It does take some time before scientists change attitudes and habits. There is always a time lag between the introduction of new technology and its general acceptance. The public's attitude toward comprehensive Two‐Dimensional Gas Chromatography is probably no exception. The number of scientists who are actively pursuing this new branch of gas chromatography is still very small. It is often a single individual who carries the torch. J.B. Phillips' name is synonymous with comprehensive Two‐Dimensional Gas Chromatography. He is not only its inventor and proponent but his fertile mind has initiated research in other related areas. Sadly, he passed aware shortly before this review was written. This contribution is dedicated to his memory.  相似文献   

17.
张素艳  耿昱  郭寅龙  王浩  吕龙 《中国化学》2005,23(7):870-874
High performance liquid chromatography (HPLC) and electrospray ionization mass spectrometry (ESI-MS) have been utilized to analyze the synthesized 2-(2-arylaminomethylphenoxy)pyrimidine derivatives, which are a new kind of environmentally benign herbicides and have passed the temporary pesticide registration. The identification of main product and impurities has been achieved according to the UV and mass spectra. Moreover, one impurity, introduced by the raw material in the last step of the synthetic route, was identified by GC-MS analysis. It can be concluded that the combination of chromatography and mass spectrometry, including LC-MS and GC-MS, provided a vital tool of the pesticide science.  相似文献   

18.
A simple and sensitive capillary gas chromatography with a hydrogen flame ionization detector (GC‐FID) method was developed for the determination of curcumol in rat plasma. From a variety of compounds and solvents tested, buagafuran was selected as the internal standard (IS) and acetonitrile was found to be the best protein precipitation agent and solvent for extracting curcumol from plasma and tissues samples. (Buagafuran was used as an internal standard. Curcumol was extracted by a protein precipitation with acetonitrile.) The samples were determined by GC on an HP‐5 column (30.0 m × 0.32 mm, 0.25 μm); inlet volume 2 μL; split ratio 10 : 1; inlet temperature 250°C; oven temperature 180°C; flow 1.0 mL/·min; FID 250°C; carrier gas N2. The resulting retention times of curcumol and IS were 6.0 and 9.5 min. There was good linearity over the range 0.133–133.3 μg/mL (r = 0.9999) in plasma samples. The method recoveries were 97.7–102.0% in plasma, and the intra‐ and inter‐day variances (RSD) were less than 15% in all cases. The GC method was applied to develop a pharmacokinetics study in which experimental rats received a single administration of curcumol by intravenous injection. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A reaction headspace gas chromatography (HS‐GC) technique was investigated for quantitatively analyzing trichloroacetic acid in human urine. This method is based on the decomposition reaction of trichloroacetic acid under high‐temperature conditions. The carbon dioxide and chloroform formed from the decomposition reaction can be respectively detected by the thermal conductivity detection HS‐GC and flame ionization detection HS‐GC. The reaction can be completed in 60 min at 90°C. This method was used to quantify 25 different human urine samples, which had a range of trichloroacetic acid from 0.52 to 3.47 mg/L. It also utilized two different detectors, the thermal conductivity detector and the flame ionization detector. The present reaction HS‐GC method is accurate, reliable and well suitable for batch detection of trichloroacetic acid in human urine.  相似文献   

20.
Capillary GC and HPLC of metal chelates of pentamethylene dithiocarbamate were examined. Copper(II), nickel(II), cobalt(III), iron(III), manganese(II) and chromium(III) chelates formed in slightly acidic media (pH 5) were extracted in methyl isobutyl ketone or chloroform. Capillary GC elution and separation was carried out on methylsilicone DB-1 column (25 m x 0.2 mm I.D.) with film thickness 0.25 microm. Electron-capture detection was used. Elution was carried at initial column temperature 200 degrees C with an increment at a rate of 5 degrees C/min up to 250 degrees C and maximum temperature was maintained for 10 min. Symmetrical peaks with baseline separation were obtained with the metal chelates investigated with linear calibration range between 5 and 25 microg/ml for each metal ion and detection limits in the range of 0.5-6.0 microg/ml corresponding to 27-333 pg of metal ion reaching to the detector. HPLC separation was carried out from LiChrosorb ODS, 5 microm column and complexes eluted with methanol-water-1 mM sodium acetate (70:28:2, v/v) with a flow-rate of 1.2 ml/ml. UV detection was at 260 nm. The detection limits obtained were in the range 2-6 microg/ml. The methods were applied to the determination of metal ions in canal water and coal samples with RSD values within 4.15%. The results when compared with a standard flame atomic absorption spectrophotometric method and revealed no significant difference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号