首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Liu Y  Sun X  Luo F  Chen J 《Analytica chimica acta》2007,604(2):107-113
A new material (IL923SGs) composed of ionic liquids and trialkyl phosphine oxides (Cyanex 923) for Y(III) uptake was prepared via a sol-gel method. The hydrophobic ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate (C8mim+PF6) was used as solvent medium and pore templating material. The extraction of Y(III) by IL923SGs was mainly due to the complexation of metal ions with Cyanex 923 doped in the solid silica. Ionic liquid was stably doped into the silica gel matrix providing a diffusion medium for Cyanex 923, and this will result in higher removal efficiencies and excellent stability for metal ions separation. IL923SGs were also easily regenerated and reused in the subsequent removal of Y(III) in four cycles.  相似文献   

2.
Chiral Half‐sandwich Pentamethylcyclopentadienyl Rhodium(III) and Iridium(III) Complexes with Schiff Bases from Salicylaldehyde and α‐Amino Acid Esters [1] A series of diastereoisomeric half‐sandwich complexes with Schiff bases from salicylaldehyde and L‐α‐amino acid esters including chiral metal atoms, [(η5‐C5H5)(Cl)M(N,O‐Schiff base)], has been obtained from chloro bridged complexes [(η5‐C5Me5)(Cl)M(μ‐Cl)]2 (M = Rh, Ir). Abstraction of chloride from these complexes with Ag[BF4] or Ag[SO3CF3] affords the highly sensitive compounds [(η5‐C5Me5)M(N,O‐Schiff base]+X? (M = Rh, Ir; X = BF4, CF3SO3) to which PPh3 can be added under formation of [(η5‐C5Me5)M(PPh3)(N,O‐Schiff base)]+X?. The diastereoisomeric ratio of the complexes ( 1 ‐ 7 and 11 ‐ 12 ) has been determined from NMR spectra.  相似文献   

3.
Two novel chiral well‐defined rhodium complexes, Rh(cod)(L‐Phe) (cod = 1,5‐cyclooctadiene, Phe = phenylalanine) and Rh(cod)(L‐Val) (Val = valine) were synthesized, isolated by recrystallization, and characterized. The helix‐sense‐selective polymerization (HSSP) of an achiral 3,4,5‐trisubstituted phenylacetylene, p‐dodecyloxy‐m,m‐dihydroxyphenylacetylene (DoDHPA) was examined by using the two Rh complexes as catalysts. These catalysts provided high molecular weight polymers (Mw 28 × 104?45 × 104) in about 40%–85% yields. The resulting polymers exhibited a bisignated CD signal at about 300 nm and a broad signal around 470 nm, indicating that they have preferential one‐handed helical structure. The present catalysts achieved larger molar ellipticity up to [θ]310 = 13.0 × 104 deg cm2/dmol than those with binary chiral catalytic systems, [Rh(cod)Cl]2/(L‐phenylalaninol), [Rh(cod)Cl]2/(L‐valinol), and [Rh(nbd)Cl]2/(R)‐PEA. All these results manifest that the present, well‐defined Rh complexes serve as excellent catalysts for the HSSP of DoDHPA. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2346–2351  相似文献   

4.
The extraction of In(III) from HCl, H2SO4, and HNO3 media using a 0.20 mol l−1 Cyanex 923 solution in toluene is investigated. In(III) is quantitatively extracted over a fairly wide range of HCl molarity while from H2SO4 and HNO3 media the extraction is quantitative at low acid concentration. The extracted metal ion has been recovered by stripping with 1.0 mol l−1 H2SO4. The stoichiometry of the In(III): Cyanex 923 complex is observed to be 1:2. The extraction of In(III) is insignificantly changed in diluents namely toluene, n-hexane, kerosene (160-200 °C), cyclohexane, and xylene having more or less the same dielectric constants, whereas, it decreases with increasing polarity of diluents such as cyclohexanone and chloroform. The extractant is stable towards prolonged acid contact and there is a negligible loss in its extraction efficiency even after recycling for 20 times. The extraction behavior of some commonly associated metal ions namely V(IV), Ti(IV), Al(III), Cr(III), Fe(III), Ga(III), Sb(III), Tl(III), Mn(II), Fe(II), Cu(II), Zn(II), Cd(II), Pb(II), and Tl(I) has also been investigated. Based on the partition data the conditions have been identified for attaining some binary separations of In(III). These conditions are extended for the recovery of pure indium from zinc blend, zinc plating mud, and galena. The recovery of the metal ions is around 95% with purity approximately 99%.  相似文献   

5.
两种含5-取代苯并-10-氮杂-15-冠-5的Schiff碱锰(III)、钴(II)配合物( , )及其吗啉基取代的类似物( , ) 用于催化α-吡啶甲酸对硝基苯酯(PNPP)水解。探讨了氮杂冠醚Schiff 碱配合物催化PNPP水解的动力学和机理;提出了配合物催化PNPP水解的动力学模型;考察了配合物结构、反应温度、缓冲溶液pH值等对PNPP水解反应的影响。结果表明,在25℃条件下随着缓冲溶液pH值的增大,催化PNPP水解速率提高;含取代苯并-10-氮杂-15-冠-5的Schiff碱配合物表现出更高的催化活性。根据阿累尼乌斯公式和不同温度下的表观一级常数求出水解反应的表观活化能。  相似文献   

6.
The reactions of dimeric complex [Rh(CO)2Cl]2 with hemilabile ether‐phosphine ligands Ph2P(CH2) nOR [n = 1, R = CH3 (a); n = 2, R = C2H5 (b)] yield cis‐[Rh(CO)2Cl(P ~ O)] (1) [P ~ O = η 1‐(P) coordinated]. Halide abstraction reactions of 1 with AgClO4 produce cis‐[Rh(CO)2(P ∩ O)]ClO4 (2) [P ∩ O = η 2‐(P,O)chelated]. Oxidative addition reactions of 1 with CH3I and I2 give rhodium(III) complexes [Rh(CO)(COCH3)ClI(P ∩ O)] (3) and [Rh(CO)ClI2(P ∩ O)] (4) respectively. The complexes have been characterized by elemental analyses, IR, 1H, 13C and 31P NMR spectroscopy. The catalytic activity of 1 for carbonylation of methanol is higher than that of the well‐known [Rh(CO)2I2]? species. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
Treatment of [Ir(bpa)(cod)]+ complex [ 1 ]+ with a strong base (e.g., tBuO?) led to unexpected double deprotonation to form the anionic [Ir(bpa?2H)(cod)]? species [ 3 ]?, via the mono‐deprotonated neutral amido complex [Ir(bpa?H)(cod)] as an isolable intermediate. A certain degree of aromaticity of the obtained metal–chelate ring may explain the favourable double deprotonation. The rhodium analogue [ 4 ]? was prepared in situ. The new species [M(bpa?2H)(cod)]? (M=Rh, Ir) are best described as two‐electron reduced analogues of the cationic imine complexes [MI(cod)(Py‐CH2‐N?CH‐Py)]+. One‐electron oxidation of [ 3 ]? and [ 4 ]? produced the ligand radical complexes [ 3 ]. and [ 4 ].. Oxygenation of [ 3 ]? with O2 gave the neutral carboxamido complex [Ir(cod)(py‐CH2N‐CO‐py)] via the ligand radical complex [ 3 ]. as a detectable intermediate.  相似文献   

8.
A series of Al(III) chloride [LAl‐Cl]; Al(III) alkoxide [LAl‐OR]2; and Zn(II) [LZn]2 complexes with Schiff base ligands were obtained. 1H NMR and X‐ray diffraction studies indicate that [LAl‐Cl] complexes have Cs symmetry and the Al center is penta‐coordinated. The Al(III) alkoxide complex [L5Al‐OiPr]2 is a dimer bridged by OiPr? with the Al center in a distorted octahedral environment. Zn complexes [LZn]2 are double helix dimers with tetra‐coordinated Zn centers. The catalytic activity for the ring‐opening polymerization of rac‐lactide was evaluated. The best activity in this series is shown by the aluminium chloride complex with a flexible three‐carbon bridge; more flexible four‐carbon bridges lower the activity.  相似文献   

9.
Three organotin–oxido clusters were formed by hydrolysis of ferrocenyl‐functionalized organotin chloride precursors in the presence of NaEPh (E=S, Se). [RFcSnCl3?HCl] ( C ; RFc = CMe2CH2C(Me)?N?N?C(Me)Fc) and [SnCl6]2? formed {(RFcSnCl2)3[Sn(OH)6]}[SnCl3] ( 3 a ) and {(RFcSnCl2)3[Sn(OH)6]}[PhSeO3] ( 3 b ), bearing an unprecedented [Sn4O6] unit, in a one‐pot synthesis or stepwise through [(RFcSnCl2)2Se] ( 1 ) plus [(RFcSnCl2)SePh] ( 2 ). A one‐pot reaction starting out from FcSnCl3 gave [(FcSn)9(OH)6O8Cl5] ( 4 ), which represents the largest Fc‐decorated Sn/O cluster reported to date.  相似文献   

10.
An ionic thermo‐responsive copolymer with multiple lower critical solution temperatures (multi‐LCSTs) has been developed, and the multi‐LCSTs were easily changeable according to the various counter anion types. The multi‐LCST values were achieved by introducing an ionic segment with an imidazolium moiety within the p‐NIPAAm polymer chain to produce poly(NIPAAm‐co‐BVIm) copolymers, [p‐NIBIm]+[Br]?, and changing the counter anion type to produce [p‐NIBIm]+[X]? (X = Cl, AcO, HCO3, BF4, CF3SO3, PF6, SbF6). The as‐prepared temperature‐responsive copolymers were physicochemically characterized via proton nuclear magnetic resonance spectroscopy (1H‐NMR), Fourier‐transform infrared, X‐ray photoelectron spectroscopy, and thermogravimetric analysis. Their various LCST values, micelle sizes, and surface charges were determined using an Ultraviolet‐visible spectrophotometer and a Zeta (ξ) sizer, which were fitted with temperature and stirring control. The copolymers showed a broad LCST spectrum between 39°C and 52°C. The Zeta (ξ) potential values at a pH = 7 decreased from about +9.7 for [p‐NIBIm]+[X]? (X = Cl ≈ Br) to about +2.0 mV for [p‐NIBIm]+[X]? (X = PF6 ≈ SbF6). The micelle size (or volume) of the copolymers with different anionic species gradually increased from 181.2 nm (or 2.49 × 10?17 cm?3) for [p‐NIBIm]+[Br]? to 229.2 nm (or 5.04 × 10?17 cm?3) for [p‐NIBIm]+[CF3SO3]?, showing a clear effect of the anion on the micelle size (or volume) at a constant temperature, such as body temperature. The fact that the most important physicochemical properties for the thermo‐responsive copolymers, such as the LCST value, micelle size (or volume), and surface charge, could be easily controlled only through the anion exchange suggests these are highly applicable as ionic thermo‐responsive copolymers in a drug (or gene, protein) delivery system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A new, simple, rapid, sensitive, efficient and low‐cost spectrophotometric procedure for the determination of gold was developed. The method is based on the reaction of [AuCl4]? with 2‐[2‐(4‐dimethylaminophenyl)‐vinyl]‐1,3,3‐trimethyl‐3H‐indolium reagent to form a colored ion associate extractable by various organic solvents. The molar absorptivity of the ion associates is in the range (5.7–9.2) × 104 L mol?1 cm?1 depending on the extractant. Butyl acetate was chosen as the extractant. The optimum reaction conditions were established: pH 2–4, concentration of the dye reagent (0.8–1.5) × 10?4 mol L?1. The determination of gold is not hindered even by a 1000‐fold concentration of Ni and Co; a 500‐fold concentration of Pb and Zn; a 100‐fold concentration of Bi, Cu, Cd, Pt, Rh and Ru; or a 20‐fold concentration of Ag. The established method was applied to the determination of gold in model samples and enriched polymetallic ores.  相似文献   

12.
The synthesis of the C2‐symmetrical ligand 1 consisting of two naphthalene units connected to two pyridine‐2,6‐dicarboxamide moieties linked by a xylene spacer and the formation of LnIII‐based (Ln=Sm, Eu, Tb, and Lu) dimetallic helicates [Ln2? 1 3] in MeCN by means of a metal‐directed synthesis is described. By analyzing the metal‐induced changes in the absorption and the fluorescence of 1 , the formation of the helicates, and the presence of a second species [Ln2? 1 2] was confirmed by nonlinear‐regression analysis. While significant changes were observed in the photophysical properties of 1 , the most dramatic changes were observed in the metal‐centred lanthanide emissions, upon excitation of the naphthalene antennae. From the changes in the lanthanide emission, we were able to demonstrate that these helicates were formed in high yields (ca. 90% after the addition of 0.6 equiv. of LnIII), with high binding constants, which matched well with that determined from the changes in the absorption spectra. The formation of the LuIII helicate, [Lu2? 1 3], was also investigated for comparison purposes, as we were unable to obtain accurate binding constants from the changes in the fluorescence emission upon formation of [Sm2? 1 3], [Eu2? 1 3], and [Tb2? 1 3].  相似文献   

13.
Kinetics of the extraction of V(IV) from acidic sulfate medium by Cyanex 301 dissolved in kerosene has been investigated using a constant interfacial area stirred cell with laminar flow (Lewis cell). Reaction orders with respect to different concentration terms, rate constant, activation energy, entropy change in activation, and the enthalpy change in activation have been measured at a phase circulation speed of 3 Hz. The rate equation at 293 K is F (kmol/m2s) = 10?7.02 (1 + 0.025[V(IV)]?1)?1 (1 + 398[H+])?1 (1 + 0.10 [HA]o?1)?1 (1 +  3.16 [SO42?]). Based on the experimental results, the mechanism of extraction has been proposed.  相似文献   

14.
In this work, dual‐column capillary microextraction (CME) system consisting of N‐(2‐aminoethyl)‐3‐aminopropyltrimethoxysilane (AAPTS)‐silica coated capillary (C1) and 3‐mercaptopropyl trimethoxysilane (MPTS)‐silica coated capillary (C2) was developed for sequential separation/preconcentration of arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)] in the extracts of human hair followed by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV‐ICP‐MS) detection with iridium as permanent modifier. Various experimental parameters affecting the dual‐column microextraction of different As species had been investigated in detail. It was found that at pH 9, As(V) and MMA could be quantitatively retained by C1 and only As(III) could be quantitatively retained by C2. With the aid of valve switching, As(V)/MMA(V) retained on C1 and As(III) retained on C2 could be sequentially desorbed by 10 µl of 0.01 mol l?1 HNO3 [for As(V)], 0.1 mol l?1 HNO3 [for MMA(V)] and 0.2 mol l?1 HNO3‐3% thiourea (m/v) [for As(III)], respectively, the eluents were immediately introduced into the Ir‐coated graphite tubes for further ETV‐ICP‐MS detection. With two‐step ETV pyrolysis program, Cl? in the sample matrix could be in situ removed, and the total As in the human hair extracts or digested solution could be interference‐free, determined by ETV‐ICP‐MS. DMA(V) in the human hair extracts was obtained by subtraction of total As in the human hair extracts from other three As species. Under the optimized conditions, the detection limits (3 σ) of the method were 3.9 pg ml?1 for As(III), 2.7 pg ml?1 for As(V), 2.6 pg ml?1 for MMA(V) and 124 pg ml?1 for total As with the relative standard deviations less than 7.0% (C = 0.1 ng ml?1, n = 7), and the enrichment factor was 286, 262 and 260 for As(III), As(V) and MMA(V), respectively. The developed method was successfully applied for the speciation of arsenic in the extracts of human hair. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The reaction of cationic diolefinic rhodium(I) complexes with 2‐(diphenylphosphino)benzaldehyde (pCHO) was studied. [Rh(cod)2]ClO4 (cod=cycloocta‐1,5‐diene) reacted with pCHO to undergo the oxidative addition of one pCHO with (1,2,3‐η)cyclooct‐2‐en‐1‐yl (η3‐C8H13) formation, and the coordination of a second pCHO molecule as (phosphino‐κP)aldehyde‐κO(σ‐coordination) chelate to give the 18e acyl(allyl)rhodium(III) species [Rh(η3‐C8H13)(pCO)(pCHO)]ClO4 (see 1 ). Complex 1 reacted with [Rh(cod)(PR3)2]ClO4 (R=aryl) derivatives 3 – 6 to give stable pentacoordinated 16e acyl[(1,2,3‐η)‐cyclooct‐2‐en‐1‐yl]rhodium(III) species [Rh(η3‐C8H13)(pCO)(PR3)]ClO4 7 – 10 . The (1,2,3‐η)‐cyclooct‐2‐en‐1‐yl complexes contain cis‐positioned P‐atoms and were fully characterized by NMR, and the molecular structure of 1 was determined by X‐ray crystal diffraction. The rhodium(III) complex 1 catalyzed the hydroformylation of hex‐1‐ene and produced 98% of aldehydes (n/iso=2.6).  相似文献   

16.
Liu et al. [Chin. J. Struct. Chem. (1996). 15 , 371–373] reported the structure of 6‐hydroxy‐1,4‐diazepane di(hydrogen bromide), C5H12N2O·2HBr, which was interpreted in terms of neutral diazepane and HBr molecules. We found, however, ample evidence that the formation of an organic salt, consisting of a diammonium cation and two bromide anions, is more plausible. This interpretation is also in agreement with thermogravimetric analysis and with the observed solution behaviour. The crystal structure of 6‐hydroxy‐1,4‐diazepane‐1,4‐diium dibromide, C5H14N2O2+·2Br?, measured at 142 K, crystallized in the orthorhombic space group P212121. The structure displays O—H…Br and N—H…Br hydrogen bonding. Contact distances are given. A search in the Cambridge Structural Database for the singly‐bonded H—Br moiety revealed a total of 69 structures. The question, whether these structures really include HBr as neutral molecules or rather Br? anions and a protonated substrate such as an amine, is addressed.  相似文献   

17.
The extraction of Nd(III) using binary mixtures of Cyanex 272 (HA), Cyanex 921/Cyanex 923 (B) in kerosene from nitric acid medium has been investigated. The effect of aqueous phase acidity, extractant concentration, nitrate ion concentration and diluents on the extraction of Nd(III) has been studied. On the basis of slope analysis results, extracted species are proposed as Nd(NO3)A2·3HA and Nd(NO3)2·A·3HA·B using Cyanex 272 and its mixture with Cyanex 921/Cyanex 923, respectively. With the mixture of 0.1 M Cyanex 272 and 0.1 M Cyanex 923 in kerosene, the extraction of 0.001 M Nd(III) from 0.001 M HNO3 solution was found to be 83.3 % whereas it was 73.3 % when 0.1 M Cyanex 921 used as synergist under same experimental conditions. The stripping data of Nd(III) from the loaded organic phase containing 0.1 M Cyanex 272 and 0.1 M Cyanex 921/Cyanex 923 with different acids indicated sulphuric acid to be the best stripping agent.  相似文献   

18.
《Electroanalysis》2004,16(6):472-477
Five bisbridged calix[6]crowns have been investigated as Cs+ ionophore in PVC membrane electrodes. As ionophores, three 1,3‐bisbridged calix[6]crown‐4‐ethers( I–III ), 1,3‐bisbridged calix[6]crown‐5‐ether( IV ), and 1,3‐bisbridged calix[6]crown‐6‐ether( V ) have been evaluated. The membranes all give good Nernstian response in the concentration range from 1×10?7 to 1×10?1 M of cesium ion. The best detection limits (?log aequation/tex2gif-inf-1.gif=7.08–7.36) are obtained for electrode membranes containing 1,3‐bisbridged cofacial‐calix[6]crown‐4‐ethers( I‐III ), and the values are the lowest compared with those reported previously. The highest selectivity coefficients [ 3.74(Cs/K), 2.63(Cs/Rb)] are obtained for the membrane of 1,3‐bisbridged calix[6]crown‐4‐ether( II ), and these values are also the highest compared with previous reports for Cs+‐ISEs. The highest selectivity towards cesium ion is attributed to the geometrically cofacial positions of two crown‐ethers in calix[6]crowns in order to provide the complex of cesium ion and eight oxygens of cofacial crowns.  相似文献   

19.
Starting from 2‐furylfulvene (1a) , 2‐thiophenylfulvene (1b) , and 1‐methyl‐2‐pyrrolylfulvene (1c), [1,2‐di(cyclopentadienyl)‐1,2‐di‐(2‐furyl)ethanediyl] titanium dichloride (2a) , [1,2‐di(cyclopentadienyl)‐1,2‐di‐(2‐thiophenyl)ethanediyl] titanium dichloride (2b) , and [1,2‐di(cyclopentadienyl)‐1,2‐bis‐(1‐methyl‐2‐pyrrolyl)ethanediyl] titanium dichloride (2c) were synthesized. When titanocenes (2a–c) were tested against pig kidney carcinoma cells (LLC‐PK), inhibitory concentrations (50%) of 4.5 × 10?4 M , 2.9 × 10?4 M and 2.0 × 10?4 M respectively were observed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Carba‐closo‐dodecaborate anions with two functional groups have been synthesized via a simple two‐step procedure starting from monoamino‐functionalized {closo‐1‐CB11} clusters. Iodination at the antipodal boron atom provided access to [1‐H2N‐12‐I‐closo‐1‐CB11H10]? ( 1 a ) and [2‐H2N‐12‐I‐closo‐1‐CB11H10]? ( 2 a ), which have been transformed into the anions [1‐H2N‐12‐RC?C‐closo‐1‐CB11H10]? (R=H ( 1 b ), Ph ( 1 c ), Et3Si ( 1 d )) and [2‐H2N‐12‐RC?C‐closo‐1‐CB11H10]? (R=H ( 2 b ), Ph ( 2 c ), Et3Si ( 2 d )) by microwave‐assisted Kumada‐type cross‐coupling reactions. The syntheses of the inner salts 1‐Me3N‐12‐RC?C‐closo‐1‐CB11H10 (R=H ( 1 e ), Et3Si ( 1 f )) and 2‐Me3N‐12‐RC?C‐closo‐1‐CB11H10 (R=H ( 2 e ), Et3Si ( 2 f )) are the first examples for a further derivatization of the new anions. All {closo‐1‐CB11} clusters have been characterized by multinuclear NMR and vibrational spectroscopy as well as by mass spectrometry. The crystal structures of Cs 1 a , [Et4N] 2 a , K 1 b , [Et4N] 1 c , [Et4N] 2 c , 1 e , and [Et4N][1‐H2N‐2‐F‐12‐I‐closo‐1‐CB11H9]?0.5 H2O ([Et4N ]4 a ?0.5 H2O) have been determined. Experimental spectroscopic data and especially spectroscopic data and bond properties derived from DFT calculations provide some information on the importance of inductive and resonance‐type effects for the transfer of electronic effects through the {closo‐1‐CB11} cage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号