首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《先进技术聚合物》2018,29(5):1426-1434
Polymeric ionic liquid (PIL) microgel of poly([2‐(methacryloyloxy)ethyl]trimethylammonium chloride) (p(MTMA)) was synthesized by using an inverse suspension polymerization technique. The anion‐exchanged PIL microgels via chloride replacement from p(MTMA) were prepared as p(MTMA)‐potassium thiocyanate (p(MTMA)‐KSCN), p(MTMA)‐sodium tetrafluoroborate (p(MTMA)‐NaBF4), and p(MTMA)‐sodium dicyanamide (p(MTMA)‐NaN(CN)2) microgels by treatment with corresponding salts of potassium thiocyanate (KSCN), sodium tetrafluoroborate NaBF4, and sodium dicyanamide NaN(CN)2 in aqueous media. The prepared microgels were found to be efficient metal‐free catalysts, and their catalytic activity in H2 production from the methanolysis of NaBH4 was investigated. Moreover, various parameters affecting H2 production such as the effect of microgel size, the concentration of NaBH4, the effect of the anion in the microgel, the reusability of the microgel, and temperature were investigated. The Ea value calculated for the methanolysis reaction of NaBH4 catalyzed by p(MTMA) microgels was found as 24.1 ± 0.7 kJ mol−1 ranging from −15 to 45°C, and this Ea value is lower than some Ea values for the same reaction. Interestingly, 10‐time successive use of p(MTMA) microgel as catalyst in NaBH4 methanolysis reduced its catalytic activity to 49%, whereas the anion‐exchanged forms of p(MTMA) microgel, p(MTMA)‐KSCN, p(MTMA)‐NaBF4, and p(MTMA)‐NaN(CN)2 only reduced their catalytic activity to 89, 86, and 79%, respectively, after 10 consecutive uses. Therefore, these anion‐exchanged microgel catalysts are highly efficient in comparison with virgin p(MTMA) microgels for regenerable H2 generation from the methanolysis of NaBH4.  相似文献   

2.
Active colloidal catalysts inspired by glutathione peroxidase (GPx) were synthesized by integration of catalytically active selenium (Se) moieties into aqueous microgels. A diselenide crosslinker (Se X‐linker) was successfully synthesized and incorporated into microgels through precipitation polymerization, along with the conventional crosslinker N,N′‐methylenebis(acrylamide) (BIS). Diselenide bonds within the microgels were cleaved through oxidation by H2O2 and converted to seleninic acid whilst maintaining the intact microgel microstructure. Through this approach catalytically active microgels with variable amounts of seleninic acid were synthesized. Remarkably, the microgels exhibited higher catalytic activity and selectivity at low reaction temperatures than the molecular Se catalyst in a model oxidation reaction of acrolein to acrylic acid and methyl acrylate.  相似文献   

3.
In this work, cationic and anionic microgels which are mainly formed from thermal responsive polymer, poly(N‐isopropylacrylamide), are prepared and mixed in water. These microgels interact with each other due to the electrostatic interaction, and aggregate voluntarily. By applying the microgel aggregating system, photo‐responsive aggregating system is constructed by using o‐nitrobenzaldehyde (NBA), which reacts and releases hydrogen triggered by photo stimuli. The microgel aggregates in an aqueous solution of NBA re‐disperse depending on the irradiation time of UV light. In addition, by masking the UV irradiated area, the resultant shapes of microgel aggregates are controlled. The aggregated microgel shows rapid and drastic volume changes in response to heat. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1317‐1322  相似文献   

4.
Here, a microgel of poly(L‐Lysine) (p(LL)) from an amino acid, L‐Lysine, was synthesized by microemulsion technique using AOT as surfactant in gasoline. The prepared p(LL) microgel was shown to be hydrolytically degradable at pH values of 5.4, 7.4, and 9 in phosphate buffer solution (PBS). The protonated p(LL) microgel was loaded with model drugs such as naproxen and riboflavin and found to release about 80% of loaded naproxen in 180 minutes and 70% of loaded riboflavin in about 120 minutes suggesting the potential of p(LL) microgels to act as fast drug delivery vehicles. Furthermore, p(LL) microgels were chemically modified with 1‐bromoethane (BE), 1‐bromooctane (BO), and 1‐bromoethylamine (BEA) to render antimicrobial capabilities. It was found that protonated p(LL) microgels had 29 ± 1 mm inhibition zone diameter for Pseudomonas aeruginosa ATCC 10145. Furthermore, minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) values for Staphylococcus aureus ATCC 6538 were also calculated as 1 and 2.5 mg/mL concentrations, respectively, for protonated p(LL) microgels.  相似文献   

5.
We demonstrate that the volume phase transition temperature (VPTT) of copolymer microgel particles made from N‐isopropylacrylamide (NIPAm) and methacryloyl hydrazide (MH) can be tailored in a reversible manner upon the reaction of the hydrazide functional groups with aldehydes. The microgels were synthesized by precipitation polymerization in water. Due to the water‐soluble nature of the MH monomer, the VPTT at which the microgel particles contract shifts to higher values by increasing the incorporated amounts of methacryloyl hydrazide from 0 to 5.0 mol %. The VPTT of the copolymer microgel dispersions in water can be fine‐tuned upon addition of hydrophobic/hydrophilic aldehydes, which react with the hydrazide moiety to produce the hydrazone analogue. This hydrazone formation is reversible, which allows for flexible, dynamic control of the thermo‐responsive behavior of the microgels. The ability to “switch” the VPTT was demonstrated by exposing hydrophilic streptomycin sulfate salt incubated microgel particles to an excess of a hydrophobic aldehyde, that is benzaldehyde. The temperature at which these microgels contracted in size upon heating was markedly lowered in these aldehyde exchange experiments. Transformation into benzaldehyde hydrazone derivatives led to assembly of the microgel particles into small colloidal clusters at elevated temperatures. This control of supracolloidal cluster formation was also demonstrated with polystyrene particles which had a hydrazide functionalised microgel shell. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1745–1754  相似文献   

6.
Poly(styrene) microgels are known, but the influence of tacticity on particle formation and behavior has not been investigated yet. Isotactic poly(styrene) (iPS) with Mn = 15–120 kg/mol is synthesized by coordinate polymerization and cross‐linked by Friedel–Crafts alkylation in a miniemulsion. Nuclear magnetic resonance (NMR) spectroscopy, light microscopy, cryogenic transmission electron microscopy, and wide‐angle powder diffraction are applied to understand the structure of microgels obtained. Typically, spherical microgels with overall diameter of 40–500 nm are found. Isotacticity of the polymer is retained during microgel formation. Increase of cross‐linker content leads to partial crystallinity inside the microgel. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 175–180  相似文献   

7.
Composite hydrogels—macroscopic hydrogels with embedded microgel particles—are expected to respond to external stimuli quickly because microgels swell much faster than bulky gels. In this work, the kinetics of the pH‐induced swelling of a composite hydrogel are studied using turbidity measurements. The embedded microgel is a pH‐ and thermosensitive poly(N‐isopropylacrylamide‐co‐acrylic acid) microgel and the hydrogel matrix is polyacrylamide. A rapid pH‐induced swelling of the embedded microgel particles is observed, confirming that composite hydrogels respond faster than ordinary hydrogels. However, compared with the free microgels, the swelling of the embedded microgel is much slower. Diffusion of OH? into the composite hydrogel film is identified as the main reason for the slow swelling of the embedded microgel particles, as the time of the pH‐induced swelling of this film is comparable to that of OH? diffusion into the film. The composition of the hydrogel matrix does not significantly change the characteristic swelling time of the composite hydrogel film. However, the swelling pattern of the film changes with composition of the hydrogel matrix.  相似文献   

8.
Poly(ethylene glycol) (PEG) can serve as an electron‐beam (e‐beam) resist to modulate protein adsorption on and cell adhesion to surfaces. PEG preferentially crosslinks under e‐beam irradiation to create microgels with controllable properties. Here, atomic‐force, scanning electron, and confocal microscopies are used to study discrete microgels formed from solvent‐cast PEG thin films by focused e‐beams with energies between 2 and 30 keV and point doses between 10 and 1000 fC. Consistent with experimental findings, Monte Carlo simulation of electron energy deposition identifies three structures within each microgel: a highly crosslinked core near the point of electron incidence; a lightly crosslinked near corona surrounding the core; and a far corona at the PEG–Si interface. The nature and relative sizes of these three regions and, hence, the microgel–protein interactions depend on the incident electron energy and dose. The far corona creates protein‐repulsive surface hundreds of nanometers or more from the microgel core. The highly crosslinked core is largely shielded by the near corona. These findings can help guide the choice of irradiation conditions to most effectively modulate protein–surface interactions via PEG microgels patterned by e‐beam lithography. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1543–1554  相似文献   

9.
Thermoresponsive colloidal microgels were prepared by polymerization of N‐isopropylacrylamide (NIPAM) in the presence of a crosslinking monomer, N,N‐methylenebisacrylamide, in water with varying concentrations (<CMC) of an anionic surfactant, sodium dodecylsulphate (SDS). Volume phase transitions of the prepared microgels were studied in D2O by 1H NMR spectroscopy including the measurements of spin–lattice (T1) and spin–spin (T2) relaxation times for the protons of poly(N‐isopropylacrylamide) (PNIPAM) at temperature range 22–50 °C. In addition, microcalorimetry, turbidometry, dynamic light scattering, and electrophoretic mobility measurements were used to characterize the aqueous microgels. As expected, increasing SDS concentration in the polymerization batch decreased the hydrodynamic size of an aqueous microgel. Structures with high mobilities at temperatures above the LCST of PNIPAM were observed in the microgels prepared with small amount of SDS, as indicated by the relaxation times of different PNIPAM protons. It was concluded that the high mobility at high temperatures is in connection to a mobile surface layer with polyelectrolyte nature and with high local LCST. High SDS concentration in the synthesis was observed to prevent the formation of permanent, solid PNIPAM particles. The results from different characterization methods indicated that PNIPAM microgels prepared in high SDS concentrations appear to be more homogeneously structured than their correspondences prepared in low SDS concentration. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3305–3314, 2006  相似文献   

10.
The electrically conductive polypyrrole/dodecylbenzene sulfonic acid/poly(N‐isopropylacrylamide‐co‐acrylic acid) (PPy/DBSA/poly(NIPAAm‐co‐AA)) composite microgels were synthesized by a chemical oxidation of pyrrole in the presence of DBSA as the primary dopant, and poly(NIPAAm‐co‐AA) microgels as the polymeric codopant and template, in which APS was used as the oxidant. It was proposed to prepare “intelligent” polymer microgel particles containing both thermosensitive and electrically conducting properties. The polymerization of pyrrole took place directly inside the microgel networks, leading to formation of composite microgels and the morphology was observed by transmission electron microscope. PPy particles interacted strongly with microgels, as the acid groups of microgels acted as the polymeric codopant. The composite microgels thus formed showed electrically conducting behavior dependent on humidity and temperature. At temperatures lower than lower critical solution temperature, the conductivity decreased with increasing the humidity and a small hysteresis phenomenon was observed. The hysteresis became indistinct when temperature was near volume phase transition temperature. However, after the treatment of high temperature and high humidity, the conductivity increased surprisingly due to the structure reorganization inside the composite microgels. The distinctive functionality of the PPy composite microgels was expected to be utilized in many attractive applications. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1648–1659, 2006  相似文献   

11.
This study demonstrates a miniaturized integrated glucose biosensor based on a carbon microbeads entrapped by glucose oxidase (GOx) immobilized on poly (N-isopropylacrylamide) (pNIPAm) microgels. Determined by the Lowry protein assay, the pNIPAm microgel possesses a high enzyme loading capacity of 31?mg/g. The pNIPAm GOx loaded on the microgel was found to maintain a high activity of approximately 0.140?U determined using the 4-aminoantipyrine colorimetric method. The integrated microelectrochemical cell was constructed using a microcentrifuge vial housing packed with (1:1, w/w) carbon entrapped by pNIPAm GOx microgels, which played the dual role of the microbioreactor and the working electrode. The microcentrifuge vial cover was used as a miniaturized reference electrode and an auxiliary electrode holder. The device can work as biosensor, effectively converting glucose to H2O2, with subsequent amperometric detection at an applied potential of ?0.4?V. The microelectrochemical biosensor was used to detect glucose in wide linear range from 30?µM to 8.0?mM, a low detection limit of 10?µM, a good linear regression coefficient (R2) of 0.994, and a calibration sensitivity of 0.0388?µA/mM. The surface coverage of active GOx, electron transfer rate constant (ks), and Michaelis–Menten constant (KMapp) of the immobilized GOx were 4.0?×?10?11?mol/cm2, 5.4?s?1, and 0.086?mM, respectively. To demonstrate the applicability and robustness of the biosensor for analysis of high sample matrix environment, glucose was analyzed in root beer. The microelectrochemical device was demonstrated for analysis of small sample (<50?µL), while affording high precision and fast signal measurement (≤5?s).  相似文献   

12.
Microgel nanoparticles were synthesized in aqueous solutions of neutral polymer hydroxypropylcellulose (HPC) through the self-association of amphiphilic HPC molecules and the subsequent cross linking at room temperature. Dynamic Light Scattering was used to study the transport properties of HPC microgels below and above the volume phase transition. Highly nonexponential, multimodal microgel spectra were observed and successfully analyzed by spectral time moment analysis. This article expands earlier results and focuses on the effect of the heating rate on microgel deswelling. During the fast heating two identified microgel modes with apparent hydrodynamic radii (RH) of 25–30 nm and 400–650 nm collapse into one mode with RH = 100–150 nm. This indicates the shrinkage of microgel size distribution and an apparent decrease in the radius of larger microgels. During the slow heating, however, both microgel-identified modes remain present above Tc. Although equally represented below the transition, the dominance of larger microgels' mode increases almost two fold with rising temperature above 40°C. Moreover, RH for this mode increases from 250–300 nm to about 800–850 nm with a multi-step temperature change from 40 to 42.5°C, indicating the growth (and not shrinkage) of microgels. The second mode is represented by the temperature independent RH, but its contribution goes down from about 50% to less than 10%. © 2008Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2792–2802, 2008  相似文献   

13.
The development of magnetic nanoparticles (MNPs) with functional groups has been intensively pursued in recent years. Herein, a simple, versatile, and cost‐effective strategy to synthesize water‐soluble and amino‐functionalized MNPs, based on the thermal decomposition of phthalimide‐protected metal–organic precursors followed by deprotection, was developed. The resulting amino‐functionalized Fe3O4, MnFe2O4, and Mn3O4 MNPs with particle sizes of about 14.3, 7.5, and 6.6 nm, respectively, had narrow size distributions and good dispersibility in water. These MNPs also exhibited high magnetism and relaxivities of r2=107.25 mM?1 s?1 for Fe3O4, r2=245.75 mM?1 s?1 for MnFe2O4, and r1=2.74 mM?1 s?1 for Mn3O4. The amino‐functionalized MNPs were further conjugated with a fluorescent dye (rhodamine B) and a targeting ligand (folic acid: FA) and used as multifunctional probes. Magnetic resonance imaging and flow‐cytometric studies showed that these probes could specifically target cancer cells overexpressing FA receptors. This new protocol opens a new way for the synthesis and design of water‐soluble and amino‐functionalized MNPs by an easy and versatile route.  相似文献   

14.
Three types of functional microgels with vinyl groups on their surface were prepared. For the first type, the counter anion from clorin was exchanged with β-methacryloylethyl sulfonic acid, styrene sulfonic acid or allyl sulfonic acid in a microgel with ammonium anions. For the second and third types, a quaternization with N,N-dimethylaminoethyl methacrylate of 3-chloro-2-hydroxypropyl methacrylate in the presence of microgel particles was prepared by emulsion copolymerization of styrene, chloromethylstyrene or N,N-dimethylamino-methylbenzene, and divinylbenzene. The resulting samples show good dispersibility in organic solvents without an emulsifier. A functional microgel-based photopolymer combined with an acrylate monomer and ultraviolet (UV) or visible (VIS) light-absorbing photoinitiators provides oleophilic images when exposed to UV or VIS light and developed in tap water. This photopolymer has a higher sensitivity than those of photopolymers based on microgels with an analogous composition but without vinyl groups. Photopolymers pepared by using functional microgels with a methacryloyl group exhibited a higher rate of polymerization (Rp) than that of photopolymers based on microgels without a vinyl group. The Rp of photopolymers prepared by using a functional microgel with either an allyl group or vinylphenyl group was nearly equal to that of photopolymers based on microgels with ammonium ions. Their high sensitivities are attributed to the rapid photopolymerization in the methacryloyl group. To determine how the photoreaction mechanism enhances sensitivity, the photoreaction products were investigated using a model photopolymerization system. It was found that the gelation reactions enhancing sensitivity are predominantly the polymerization and crosslinking ones when a microgel with the methacryloyl group is used, and the graft copolymerization with acrylate monomers when a microgel with either the allyl group or vinylphenyl group is used.  相似文献   

15.
β‐Cyclodextrin (βCD) microgels were prepared water in oil emulsion, and cinnamic acid (CA) was loaded in the microgel by inclusion complexation. The specific loading of CA in the microgel was 0.0203 mg/mg, and it was less than that the calculated specific loading (0.0368 mg/mg). The maximum swelling ratio of CA‐loaded βCD microgel (CAβCD microgel) decreased from 233.9% to 225.7% upon the irradiation of ultraviolet light (λ = 365 nm). And the 5(6)‐carboxyfluorescein release of CAβCD microgel, observed for 12 h, was suppressed upon the irradiation of ultraviolet light, possibly because the microgel can be photocross‐linked, and its mass transfer resistance against dye diffusion would increase. The swelling ratio of CAβCD microgel somewhat depended on the pH value of the medium, possibly because electrostatic repulsion can be developed within the microgel by the ionizable carboxylic group of CA. The 5(6)‐carboxyfluorescein release degree in 12 h of CAβCD microgel increased from 10.5% to 85.1% when the pH value increased from 3.0 to pH 9.0. This is mainly because CA is more soluble at a higher pH value. In the full range of pH value tested, the release degrees of CAβCD microgel were slightly higher than those of βCD microgel, possibly because of the electrostatic repulsion developed within the CAβCD microgel. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
In cancer therapy, the selective targeting of cancer cells while avoiding side effects to normal cells is still full of challenges. Here, we developed dual‐functionalized crescent microgels, which selectively captured and killed lung cancer cells in situ without killing other cells. Crescent microgels with the inner surface of the cavity functionalized with antibody and containing glucose oxidase (GOX) in the gel matrix have been produced in a microfluidic device. These microgels presented high affinity and good selectivity to lung cancer cells and retained them inside the cavities for extended periods of time. Exposing the crescent hydrogels to physiological concentrations of glucose leads to the production of a locally high concentration of H2O2 inside the microgels’ cavities, due to the catalytic action by GOX inside the gel matrix, which selectively killed 90 % cancer cells entrapped in the microgel cavities without killing the cells outside. Our strategy to create synergy between different functions by incorporating them in a single microgel presents a novel approach to therapeutic systems, with potentially broad applications in smart materials, bioengineering and biomedical fields.  相似文献   

17.
A novel water‐dispersible reactive microgel, which had a diameter of 40–90 nm, was synthesized for photopolymer materials. The microgels have segments with substituted ammonium groups, to provide water solubility, in their polymer networked structure. It has unsaturated groups connected to the quaternary nitrogens by ionic bonding (I‐type microgel). The I‐type microgel was compared with one that has methacryloyl groups connected with the quaternary nitrogens of the microgel by covalent bonding (C‐type microgel). The I‐type microgels were able to separately control the modified amount of quaternary nitrogen and methacryloyl group. In the presence of 2,4‐diethylthioxantone as a photoinitiator and pentaerthritol triacrylate as a crosslinker, the photopolymer containing the C‐type or I‐type microgels had sensitivity high enough for practical use. Not only the amount of the methacryloyl group of the microgel but the amount of the quaternary nitrogen affected the sensitivity and the rate of polymerization of the water‐dispersible photopolymer containing the I‐type microgels. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
In the present work, we investigate the potential of aqueous polymer microgels in membrane technology, especially for filtration applications. The poly(N‐vinylcaprolactam)‐based microgels exhibit thermoresponsive behavior and were employed to coat hollow‐fiber membranes used for micro‐ and ultrafiltration. We discuss the preparation of microgel‐modified membranes (by “inside‐out” as well as “outside‐in” filtration in dead‐end mode). The clean‐water permeability and stability of these membranes was studied not only as a function of time, but also of temperature. The microgel‐modified membranes exhibit a reversible thermoresponsive behavior whereby both the resistance and the retention increased with decreasing temperature.  相似文献   

19.
In situ gelable poly(N-isopropylacrylamide-co-acrylamide) microgels were prepared by precipitation polymerization in the presence of various amounts of N,N′-methlenebisacrylamide as a crosslinker. The diameters of microgels were in the range of 200–300 nm with narrow distributions as determined by photo correlation spectroscopy. The equilibrium swelling ratio and thermosensitive properties of the microgels increased with decreasing crosslinker content. The volume phase transition of microgels dispersions at high concentrations were investigated by phase diagrams. The microgels dispersions experienced four phases when the temperature was increased: semitranslucent swollen gel, clear flowable suspension, cloud flowable suspension, and white shrunken gel. The related phase transition temperatures were influenced by crosslinker content and the concentration of the microgel dispersions. Herein, the gelation temperature was changed by more than 20 °C, shrinking temperatures were slightly changed by about 3 °C, and cloud point temperatures showed almost no change. The three phase transition temperatures of microgels dispersed in phosphate-buffered saline solutions were lower than that in water. As drug carriers, the release rates of bleomycin from bleomycin-loaded microgel dispersions exhibited diffusion control at human body temperature.  相似文献   

20.
Three types of poly(N‐vinylcaprolactam)‐based temperature‐sensitive microgel particles were synthesized by emulsion polymerization. The uptake of a model drug (calcein) into the particles was analyzed in terms of the amount of calcein absorbed and equilibrium–swelling degree. By incubating the microgels with primary neuronal cell cultures of embrionary rats, cell viability and biocompatibility tests were carried out. The results show that the driving force for the model drug to penetrate into the microgel particles is H‐bonding associations. On the other hand, cell death was microgel concentration and incubation period dependent. Microgels can be stored in a dried state and resuspended in water when necessary without changing their swelling–deswelling ability. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1173–1181, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号