首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we used time-sliced ion velocity imaging to study the photodissociation dynamics of MgO at \mbox{193 nm}. Three dissociation pathways are found through the speed and angular distributions of magnesium. One pathway is the one-photon excitation of MgO(X\begin{document}$^1\Sigma^+$\end{document}) to MgO(G\begin{document}$^1\Pi$\end{document}) followed by spin-orbit coupling between the G\begin{document}$^1\Pi$\end{document}, 3\begin{document}$^3\Pi$\end{document} and 1\begin{document}$^5\Pi$\end{document} states, and finally dissociated to the Mg(\begin{document}$^3$\end{document}P\begin{document}$_\textrm{u}$\end{document})+O(\begin{document}$^3$\end{document}P\begin{document}$_\textrm{g}$\end{document}) along the 1\begin{document}$^5\Pi$\end{document} surface. The other two pathways are one-photon absorption of MgO(A\begin{document}$^1\Pi$\end{document}) state to MgO(G\begin{document}$^1\Pi$\end{document}) and MgO(4\begin{document}$^1\Pi$\end{document}) state to dissociate into Mg(\begin{document}$^3$\end{document}P\begin{document}$_\textrm{u}$\end{document})+O(\begin{document}$^3$\end{document}P\begin{document}$_\textrm{g}$\end{document}) and Mg(\begin{document}$^1$\end{document}S\begin{document}$_\textrm{g}$\end{document})+O(\begin{document}$^1$\end{document}S\begin{document}$_\textrm{g}$\end{document}), respectively. The anisotropy parameters of the dissociation pathways are related to the lifetime of the vibrational energy levels and the coupling of rotational and vibronic spin-orbit states. The total kinetic energy analysis gives \begin{document}$D_0$\end{document}(Mg\begin{document}$-$\end{document}O)=21645\begin{document}$\pm$\end{document}50 cm\begin{document}$^{-1}$\end{document}.  相似文献   

2.
The collisionless photodissociation dynamics of isobutene (i-C(4)H(8)) at 193 nm via photofragment translational spectroscopy are reported. Two major photodissociation channels were identified: H + C(4)H(7) and CH(3) + CH(3)CCH(2). Translational energy distributions indicate that both channels result from statistical decay on the ground state surface. Although the CH(3) loss channel lies 13 kcal mol(-1) higher in energy, the CH(3):H branching ratio was found to be 1.7 (5), in reasonable agreement with RRKM calculations.  相似文献   

3.
4.
The photodissociation of propargyl chloride (C3H3Cl) has been studied at 193 nm. Ion imaging experiments with state-selective detection of the Cl atoms and single-photon ionization of the C3H3 radicals were performed, along with measurements of the Cl + C3H3 and HCl + C3H2 recoil kinetic energy distributions, using a scattering apparatus with electron bombardment ionization detection to resolve the competing Cl and HCl elimination channels. The experiments allow the determination of the Cl (2P3/2) and Cl (2P1/2) (hereafter Cl) branching fractions associated with the C-Cl bond fission, which are determined to be 0.5 +/- 0.1 for both channels. Although prior translational spectroscopy studies by others had concluded that the low velocity signal at the Cl+ mass was due to daughter fragments of the HCl elimination products, the present work shows that Cl atoms are produced with a bimodal recoil kinetic energy distribution. The major C-Cl bond fission channel, with a narrow recoil kinetic energy distribution peaking near 40 kcal/mol, produces both Cl and Cl, whereas the minor (5%) channel, partitioning much less energy to relative kinetic energy, produces only ground spin-orbit state Cl atoms. The maximum internal energy of the radicals produced in the low-recoil-kinetic-energy channel is consistent with this channel producing electronically excited propargyl radicals. Finally, in contrast to previous studies, the present work determines the HCl recoil kinetic energy distribution and identifies the possible contribution to this spectrum from propargyl radicals cracking to C3+ ions in the mass spectrometer.  相似文献   

5.
Photofragment translational spectroscopy was used to identify the primary and secondary reaction pathways in 193 nm photodissociation of chlorine azide (ClN(3)) under collision-free conditions. Both the molecular elimination (NCl+N(2)) and the radical bond rupture channel (Cl+N(3)) were investigated and compared with earlier results at 248 nm. The radical channel strongly dominates, just as at 248 nm. At 193 nm, the ClN(3) (C (1)A(")) state is excited, rather than the B (1)A(') state that is accessed at 248 nm, resulting in different photofragment angular distributions. The chlorine translational energy distribution probing the dynamics of the radical bond rupture channel shows three distinct peaks, with the two fastest peaks occurring at the same translational energies as the two peaks seen at 248 nm that were previously assigned to linear and "high energy" N(3). Hence, nearly all the additional photon energy relative to 248 nm appears as N(3) internal excitation rather than as translational energy, resulting in considerably more spontaneous dissociation of N(3) to N(2)+N.  相似文献   

6.
Photodissociation dynamics of benzyl alcohol, C(6)H(5)CH(2)OH and C(6)H(5)CD(2)OH, in a molecular beam was investigated at 193 nm using multimass ion imaging techniques. Four dissociation channels were observed, including OH elimination and H(2)O elimination from the ground electronic state, H atom elimination (from OH functional group), and CH(2)OH elimination from the triplet state. The dissociation rate on the ground state was found to be 7.7 × 10(6) s(-1). Comparison to the potential energy surfaces from ab initio calculations, dissociation rate, and branching ratio from Rice-Ramsperger-Kassel-Marcus calculations were made.  相似文献   

7.
《Chemical physics letters》1987,133(6):501-506
The photodissociation dynamics of water in its first absorption band has been studied in detail by photolyzing room-tempera-ture and jet-cooled H2O with an ArF excimer laser at 193 nm. The fate of the ejected OH(X 2Π) photofragments was probed by laser-induced fluorescence. The excess energy is transferred almost exclusively into translational motion of the products, ∂t = 0.97. The rotational distribution depends strongly on the initial temperature. For warm water (T = 300 K), the rotational distribution can be described by a Boltzmann distribution with a temperature parameter of 400 K. No significant difference between the two Λ components, probed via Q and R, P lines, was observed. In the case of jet-cooled H2O the rotational distribution of the Π component of the Λ doublets can be described by a temperature parameter of 330 K; that of the Π+ component strongly deviates from a Boltzmann distribution. The Λ doublet population shows an increasing inversion with increasing JOH. The dissociation process does not distinguish between the two spin-orbit states and the spin is only a spectator in the dissociation process of H2O at 193 nm. These results are compared with observations of the photolysis of water at 157 nm.  相似文献   

8.
The S(1D2)+CO(X1Σ+) product channel from photodissociation of OCS at 217 nm has been measured using the DC slice velocity map imaging (VMI) technique in combination with resonance enhanced multiphoton ionization (REMPI). Two diflerent REMPI intermediate states (1F3 and 1P1) and several pump-probe laser polarization geometries are used to detect the angular momentum polarization of the photofragmented S(1D2). The molecular- frame polarization parameters, as well as the laboratory-frame anisotropy parameters, for individual rotational states of co-fragment CO, are determined using two diflerent full quantum theories. The measured total kinetic energy release spectrum from photodissociation of OCS indicates two dissociation channels, corresponding to the fast and slow recoiling velocities of S(1D2), respectively. The slow channel is concluded to originate from an initial photoexcitation to the A(1A') state, followed by a non-adiabatic transition to the ground state. The fast channel is found to follow a coherent excitation to A(1A') and B(1A') states, where contributions of the two states are almost equal at 217 nm. The determined alignment and anisotropy parameters further indicate that the slow channel follows an incoherent excitation, while the fast channel follows a coherent excitation to A(1A') and B(1A') states with a phase di erence of π/2.  相似文献   

9.
Molecular beams of halogenated hydrocarbons containing chlorine and bromine atoms were photodissociated using an excimer laser at 193 nm. Molecules photodissociated were HCCBr, HCCCH2Br, HCCCH2Cl, CH3Cl, C2H5Cl and i-C3H7Cl. The time-of-flight distributions of the photofragments were measured in order to study the primary processes and the dissociation dynamics. Generalizations consistent with the data are that atomic products (RX → R + X) result from direct dissociation of the CX repulsive singlet state, molecular elimination (RX → R′ + HX) is a result of a crossover to the ground state and triplet states are involved in the photodissociation of alkyne compounds.  相似文献   

10.
《Chemical physics letters》1987,139(6):585-588
A molecular beam of SO2 has been photodissociated at 193 nm to measure both the translational energy and angular distributions, from which it is concluded that the photodissociation is predissociative and that the vibrational population is peaked at ν″ = 2.  相似文献   

11.
Photodissociation of jet-cooled o-, m-, and p-ethyltoluene and p-fluoroethylbenzene at both 193 and 248 nm was studied separately using vacuum ultraviolet photoionization/multimass ion imaging techniques. Dissociation occurs exclusively through alkyl chain C-C bond cleavage. The measured photofragment translational energy distributions at 193 nm decrease monotonically with increasing translational energy. The distributions indicate that dissociation occurs from the ground electronic state after internal conversion. However, the photofragment translational energy distributions from o-, m-, and p-ethyltoluene obtained at 248 nm contain a slow and a fast component; the ratios between these components are 1:4, 1:1.3, and 1:6, respectively. On the other hand, only the slow component was observed from p-fluoroethylbenzene at 248 nm. The fast components are attributed to the dissociation from the triplet state after intersystem crossing, and the slow components result from the dissociation in the ground electronic state. Comparison with the photodissociation of benzene and toluene and ab initio calculation has been made.  相似文献   

12.
《Chemical physics letters》1986,125(3):263-266
A molecular beam of C6F5Cl was photolyzed using an excimer laser at 193 nm. Measurements of time-of-flight distributions of the Cl photofragment revealed a prominent fluorination effect on the dissociation process, namely a large reduction of the kinetic energy of the fragments. The dominant process is dissociation after thermalization to the ground state.  相似文献   

13.
The ab initio/Rice-Ramsperger-Kassel-Marcus (RRKM) approach has been applied to investigate the photodissociation mechanism of azulene at 6.4 eV (the laser wavelength of 193 nm) upon absorption of one UV photon followed by internal conversion into the ground electronic state. Reaction pathways leading to various decomposition products have been mapped out at the G3(MP2,CC)//B3LYP level and then the RRKM and microcanonical variational transition state theories have been applied to compute rate constants for individual reaction steps. Relative product yields (branching ratios) for the dissociation products have been calculated using the steady-state approach. The results show that photoexcited azulene can readily isomerize to naphthalene and the major dissociation channel is elimination of an H-atom from naphthalene. The branching ratio of this channel decreases with an increase of the photon energy. Acetylene elimination is the second probable reaction channel and its branching ratio rises as the photon energy increases. The main C8H6 fragments at 193 nm are phenylacetylene and pentalene and the yield of the latter grows fast with the increasing excitation energy.  相似文献   

14.
Photodissociation and photoionization of 2,5-dihydroxybenzoic acid (25DHBA), at 193 and 355 nm were investigated separately in a molecular beam using multimass ion imaging techniques. Two channels competed after excitation by one 193 nm photon. One channel is dissociation from the repulsive excited state along O-H bond distance, resulting in H atom elimination from meta-OH functional group. The other channel is internal conversion to the ground state, followed by H(2)O elimination. Some of the fragments further proceeded to secondary dissociation. On the other hand, absorption of one 355 nm photon gave rise to H(2)O elimination channel on the ground state. Absorption of more than one 355 nm photon resulted in the three-body dissociation which also occurs on the ground state. Dissociation on the excited state does not play a role at 355 nm. The large concentration ratio (2×10(5)), between neutral fragments and cations produced from 355 nm multiphoton excitation indicates that internal conversion followed by dissociation, is the major channel for 355 nm multiphoton excitation. Multiphoton ionization is a minor channel. Multiphoton ionization of 25DHBA clusters only produces 25DHBA cations. Neither anion nor protonated 25DHBA cation were observed. It is very different from the ions produced from solid matrix-assisted laser desorption/ionization (MALDI), experiments. This suggests that protonated 25DHBA and negatively charged 25DHBA generated in MALDI experiments does not simply result from the ionization following proton transfer reactions or charge transfer reactions of the clusters in the gas phase.  相似文献   

15.
利用离子速度影像技术结合共振增强多光子电离(REMPI)技术, 研究了邻溴甲苯在234和267 nm激光作用下的光解机理. 平动能分布表明, 基态Br(2P3/2)和自旋轨道激发态Br*(2P1/2)产生于两个解离通道: 快通道和慢通道. 快通道的各向异性参数在234 nm分别为1.15(Br)和0.55(Br*), 在267 nm分别为0.90(Br)和0.60(Br*). 慢通道的各向异性参数在234 nm分别为0.12(Br)和0.14(Br*), 在267 nm分别为0.11(Br)和0.10(Br*). 源自于慢通道的Br和Br*碎片的各向异性弱于快通道. Br(2P3/2)的相对量子产率Φ(Br)在234 nm为0.67, 在267 nm为0.70. 邻溴甲苯在234 和267 nm光解主要产生基态产物Br(2P3/2). 快通道产生于(π, π*)束缚单重态被激发, 随后通过排斥性(n, σ*)态的预解离. 慢通道各向异性参数接近零, 由此证实慢通道来源于单重激发态内转换到高振动基态而引发的热解离.  相似文献   

16.
157 nm photodissociation of jet-cooled CH3OH and C2H5OH was studied using the high-n Rydberg atom time-of-flight (TOF) technique. TOF spectra of nascent H atom products were measured. Simulation of these spectra reveals three different atomic H loss processes: one from hydroxyl H elimination, one from methyl (ethyl) H elimination, and one from secondary dissociation of the methoxy (ethoxy) radical. The relative branching ratio indicates secondary dissociation of ethoxy is less important than that of methoxy. The average angular anisotropy parameter of methanol is negative (withβ≈-0.3), indicating the transition dipole moment is perpendicular to the C-O-H plane. The slightly more negative β value of ethanol (with β≈-0.4) implies that ethanol has a longer rotational period. These experimental results indicate that both systems undergo fast internal conversion to the 3s surface after it is excited to the 3px surface, and then dissociate on the 3s surface. The translational energy distribution of the CH3O+H products reveals extensive CH3 rocking or CH3 umbrella excitation in the CH3O radical. However the vibrational structures are not resolved in the C2H5O radical  相似文献   

17.
Measurements of the nascent OH product from photodissociation of gaseous nitromethane and nitroethane at 266 nm were performed using the single-photon laser induced °uorescence technique. The OH fragment is found to be vibrationally cold for both systems. The rotational state distribution of nitromethane are Boltzmann, with rotational temperature of Trot=2045§150 and 1923§150 K for both 2|3=2 and 2|1=2 states, respectively. For nitroethane, the rotational state distribution shows none Boltzmann and cannot be well characterized by a rotational temperature, which indicates the di?erent mechanisms in producing OH radicals from photodissociation of nitromethane and nitroethane. The rotational energy is calculated as 14.36§0.8 and 4.98§0.8 kJ/mol for nitromethane and nitroethane, respectively. A preferential population of the low spin-orbit component (2|3=2) is observed for both nitromethane and nitroethane. The dominant population of |+ state in two ¤-doublet states is also observed for both nitromethane and nitroethane,which indicates that the unpaired ? lobe of the OH fragment is parallel to the plane of rotation.  相似文献   

18.
In this article the numerous intramolecular reactions of electronically excited benezene derivatives, which in many instances are only mentioned in original papers, are systematically analyzed and arranged according to reaction types. All known reaction types can be classified, and subdivided into reactions of the benzene ring (ionization, ring opening, ring alteration), reactions with participation of side chains (α-, β-, γ-cleavage, homolysis, heterolysis), reactions of substituents with side chains (cyclization, dealkylation, cleavage of protective groups), and reactions of side chains with the aromatic ring (substitution, addition, dearomatization, cyclization). The selectivity of the energetically feasible competing reactions is primarily determined by geometric factors. Applications of the empirical effects are numerous and varied in preparative organic chemistry. Many of the reactions under discussion are already utilized industrially (e.g. in photochromism, UV stabilization, photography, information storage, printing, coating and polymer technology, and pharmacy).  相似文献   

19.
The photodissociation dynamics of amorphous solid water (ASW) films and polycrystalline ice (PCI) films at a substrate temperature of 100 K have been investigated by analyzing the time-of-flight (TOF) mass spectra of photofragment hydrogen atoms at 157 and 193 nm. For PCI films, the TOF spectrum recorded at 157 nm could be characterized by a combination of three different (fast, medium, and slow) Maxwell-Boltzmann energy distributions, while that measured at 193 nm can be fitted in terms of solely a fast component. For ASW films, the TOF spectra measured at 157 and 193 nm were both dominated by the slow component, indicating that the photofragment H atoms are accommodated to the substrate temperature by collisions. H atom formation at 193 nm is attributed to the photodissociation of water species on the ice surface, while at 157 nm it is ascribable to a mixture of surface and bulk photodissociations. Atmospheric implications in the high latitude mesopause region of the Earth are discussed.  相似文献   

20.
Photofragmentation—also termed ‘half collision’—is a method to comprehend the complicated process of a chemical reaction (the ‘full collision’) better. The use of polarized light enabled the study of the spectroscopy of aligned molecules, yielding information about the photochemically produced intermediate state—the transition state. Even though stable reaction products were studied, the forces responsible for the motions of the fragments can be visualized. In this way a model can be constructed that represents the part of the potential hypersurface responsible for the observed motions. The application of this spectroscopic method to hydrogen peroxide H2O2 has become a classic example. The complex decomposition of hydrazoic acid, HN3, represented a challenge, and its successful solution proves the general applicability of this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号