首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We consider k‐factorizations of the complete graph that are 1‐rotational under an assigned group G, namely that admit G as an automorphism group acting sharply transitively on all but one vertex. After proving that the k‐factors of such a factorization are pairwise isomorphic, we focus our attention to the special case of k = 2, a case in which we prove that the involutions of G necessarily form a unique conjugacy class. We completely characterize, in particular, the 2‐factorizations that are 1‐rotational under a dihedral group. Finally, we get infinite new classes of previously unknown solutions to the Oberwolfach problem via some direct and recursive constructions. © 2007 Wiley Periodicals, Inc. J Combin Designs 16: 87–100, 2008  相似文献   

2.
We construct sets of three pairwise orthogonal orthomorphisms of Z3n, n not divisible by either 2 or 3, n ≠ 7, 17. Combined with results in the literature, this reduces the problem of determining for which v, there exist three pairwise orthogonal orthomorphisms of Zv to the case v = 9p, p > 3 a prime. This yields new lower bounds for the number of pairwise orthogonal orthomorphisms of classes of dihedral groups of doubly even order, and classes of linear groups. These results also find application in the construction of Z‐cyclic triplewhist tournaments. © 2007 Wiley Periodicals, Inc. J Combin Designs 15: 195–209, 2007  相似文献   

3.
In this paper, we study the critical point‐arboricity graphs. We prove two lower bounds for the number of edges of k‐critical point‐arboricity graphs. A theorem of Kronk is extended by proving that the point‐arboricity of a graph G embedded on a surface S with Euler genus g = 2, 5, 6 or g ≥ 10 is at most with equality holding iff G contains either K2k?1 or K2k?4 + C5 as a subgraph. It is also proved that locally planar graphs have point‐arboricity ≤ 3 and that triangle‐free locally planar‐graphs have point‐arboricity ≤ 2. © 2002 John Wiley & Sons, Inc. J Graph Theory 39: 50–61, 2002  相似文献   

4.
In this paper, we will study the lower bounds of the life span (the maximal existence time) of solutions to the initial‐boundary value problems with small initial data and zero Neumann boundary data on exterior domain for one‐dimensional general quasilinear wave equations utt?uxx=b(u,Du)uxx+F(u,Du). Our lower bounds of the life span of solutions in the general case and special case are shorter than that of the initial‐Dirichlet boundary value problem for one‐dimensional general quasilinear wave equations. We clarify that although the lower bounds in this paper are same as that in the case of Robin boundary conditions obtained in the earlier paper, however, the results in this paper are not the trivial generalization of that in the case of Robin boundary conditions because the fundamental Lemmas 2.4, 2.5, 2.6, and 2.7, that is, the priori estimates of solutions to initial‐boundary value problems with Neumann boundary conditions, are established differently, and then the specific estimates in this paper are different from that in the case of Robin boundary conditions. Another motivation for the author to write this paper is to show that the well‐posedness of problem 1.1 is the essential precondition of studying the lower bounds of life span of classical solutions to initial‐boundary value problems for general quasilinear wave equations. The lower bound estimates of life span of classical solutions to initial‐boundary value problems is consistent with the actual physical meaning. Finally, we obtain the sharpness on the lower bound of the life span 1.8 in the general case and 1.10 in the special case. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Classical persistent homology is a powerful mathematical tool for shape comparison. Unfortunately, it is not tailored to study the action of transformation groups that are different from the group Homeo(X) of all self‐homeomorphisms of a topological space X. This fact restricts its use in applications. In order to obtain better lower bounds for the natural pseudo‐distance dG associated with a group G ? Homeo(X), we need to adapt persistent homology and consider G‐invariant persistent homology. Roughly speaking, the main idea consists in defining persistent homology by means of a set of chains that is invariant under the action of G. In this paper, we formalize this idea and prove the stability of the persistent Betti number functions in G‐invariant persistent homology with respect to the natural pseudo‐distance dG. We also show how G‐invariant persistent homology could be used in applications concerning shape comparison, when the invariance group is a proper subgroup of the group of all self‐homeomorphisms of a topological space. In this paper, we will assume that the space X is triangulable, in order to guarantee that the persistent Betti number functions are finite without using any tameness assumption. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Superconvergence approximations of singularly perturbed two‐point boundary value problems of reaction‐diffusion type and convection‐diffusion type are studied. By applying the standard finite element method of any fixed order p on a modified Shishkin mesh, superconvergence error bounds of (N?1 ln (N + 1))p+1 in a discrete energy norm in approximating problems with the exponential type boundary layers are established. The error bounds are uniformly valid with respect to the singular perturbation parameter. Numerical tests indicate that the error estimates are sharp; in particular, the logarithmic factor is not removable. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 374–395, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/num.10001  相似文献   

7.
We consider symmetric flows of a viscous compressible barotropic fluid with a free boundary, under a general mass force depending both on the Eulerian and Lagrangian co‐ordinates, with arbitrarily large initial data. For a general non‐monotone state function p, we prove uniform‐in‐time energy bound and the uniform bounds for the density ρ, together with the stabilization as t → ∞ of the kinetic and potential energies. We also obtain H1‐stabilization of the velocity v to zero provided that the second viscosity is zero. For either increasing or non‐decreasing p, we study the Lλ‐stabilization of ρ and the stabilization of the free boundary together with the corresponding ω‐limit set in the general case of non‐unique stationary solution possibly with zones of vacuum. In the case of increasing p and stationary densities ρS separated from zero, we establish the uniform‐in‐time H1‐bounds and the uniform stabilization for ρ and v. All these results are stated and mainly proved in the Eulerian co‐ordinates. They are supplemented with the corresponding stabilization results in the Lagrangian co‐ordinates in the case of ρS separated from zero. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, some optimal inclusion intervals of matrix singular values are discussed in the set ΩA of matrices equimodular with matrix A. These intervals can be obtained by extensions of the Gerschgorin‐type theorem for singular values, based only on the use of positive scale vectors and their intersections. Theoretic analysis and numerical examples show that upper bounds of these intervals are optimal in some cases and lower bounds may be non‐trivial (i.e. positive) when PA is a H‐matrix, where P is a permutation matrix, which improves the conjecture in Reference (Linear Algebra Appl 1984; 56 :105‐119). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
We show a connection between two concepts that have hitherto been investigated separately, namely convex‐round graphs and circular cliques. The connections are twofold. We prove that the circular cliques are precisely the cores of convex‐round graphs; this implies that convex‐round graphs are circular‐perfect, a concept introduced recently by Zhu [10]. Secondly, we characterize maximal Kr‐free convex‐round graphs and show that they can be obtained from certain circular cliques in a simple fashion. Our proofs rely on several structural properties of convex‐round graphs. © 2002 Wiley Periodicals, Inc. J Graph Theory 40: 182–194, 2002  相似文献   

10.
In this paper, we propose a novel class of parametric bounds on the Q‐function, which are lower bounds for 1 ≤ a < 3 and x > xt = (a (a‐1) / (3‐a))1/2, and upper bound for a = 3. We prove that the lower and upper bounds on the Q‐function can have the same analytical form that is asymptotically equal, which is a unique feature of our class of tight bounds. For the novel class of bounds and for each particular bound from this class, we derive the beneficial closed‐form expression for the upper bound on the relative error. By comparing the bound tightness for moderate and large argument values not only numerically, but also analytically, we demonstrate that our bounds are tighter compared with the previously reported bounds of similar analytical form complexity.  相似文献   

11.
We consider a linear system of the form A1x1+ A2x2+η=b1. The vector η consists of identically distributed random variables all with mean zero. The unknowns are split into two groups x1 and x2. In the model usually there are more unknowns than observations and the resulting linear system is most often consistent having an infinite number of solutions. Hence some constraint on the parameter vector x is needed. One possibility is to avoid rapid variation in, e.g. the parameters x2. We formulate the problem as a partially regularized least‐squares problem, and propose a direct solution method based on the QR decomposition of matrix blocks. Further we consider regularizing using one and two regularization parameters, respectively. We also discuss the choice of regularization parameters, and extend Reinsch's method to the case with two parameters. Also the cross‐validation technique is treated. We present test examples taken from an application in modelling of the substance transport in rivers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A k‐piece of a graph G is a connected subgraph of G all of whose nodes have degree at most k and at least one node has degree equal to k. We consider the problem of covering the maximum number of nodes of a graph by node disjoint k‐pieces. When k = 1 this is the maximum matching problem, and when k = 2 this is the problem, recently studied by Kaneko [ 19 [, of covering the maximum number of nodes by disjoint paths of length greater than 1. We present a polynomial time algorithm for the problem as well as a Tutte‐type existence theorem and a Berge‐type min‐max formula. We also solve the problem in the more general situation where the “pieces” are defined in terms of lower and upper bounds on the degrees. © 2006 Wiley Periodicals, Inc. J Graph Theory  相似文献   

13.
A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number γt(G) of G. It is known [J Graph Theory 35 (2000), 21–45] that if G is a connected graph of order n > 10 with minimum degree at least 2, then γt(G) ≤ 4n/7 and the (infinite family of) graphs of large order that achieve equality in this bound are characterized. In this article, we improve this upper bound of 4n/7 for 2‐connected graphs, as well as for connected graphs with no induced 6‐cycle. We prove that if G is a 2‐connected graph of order n > 18, then γt(G) ≤ 6n/11. Our proof is an interplay between graph theory and transversals in hypergraphs. We also prove that if G is a connected graph of order n > 18 with minimum degree at least 2 and no induced 6‐cycle, then γt(G) ≤ 6n/11. Both bounds are shown to be sharp. © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 55–79, 2009  相似文献   

14.
Let Γ be an X‐symmetric graph admitting an X‐invariant partition ?? on V(Γ) such that Γ?? is connected and (X, 2)‐arc transitive. A characterization of (Γ, X, ??) was given in [S. Zhou Eur J Comb 23 (2002), 741–760] for the case where |B|>|Γ(C)∩B|=2 for an arc (B, C) of Γ??.We con‐sider in this article the case where |B|>|Γ(C)∩B|=3, and prove that Γ can be constructed from a 2‐arc transitive graph of valency 4 or 7 unless its connected components are isomorphic to 3 K 2, C 6 or K 3, 3. As a byproduct, we prove that each connected tetravalent (X, 2)‐transitive graph is either the complete graph K 5 or a near n‐gonal graph for some n?4. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 232–245, 2010  相似文献   

15.
In general, it is difficult to determine whether two starter induced 1‐factorizations of K2n are isomorphic. However, when one of the 1‐factorizations has a unique starter group to within conjugacy, we show that two starter induced 1‐factorizations on K2n are isomorphic, if and only if, the corresponding starters are isomorphic. Two starters are isomorphic if there is a group isomorphism between the respective starter groups which takes one starter to the other. It is relatively easy to check whether starters are isomorphic in many examples. The difficulty comes in showing there is a unique starter group to within conjugacy. A number of sufficient conditions for this are given; one such condition is the assumption that the 1‐factorization be irreducible, a condition which applies to all almost perfect 1‐factorizations. Also, generalized Mullin Nemeth starters are introduced and discussed in this context. © 2003 Wiley Periodicals, Inc. J Combin Designs 11: 124–143, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jcd.10023  相似文献   

16.
We consider lower bounds on the the vertex‐distinguishing edge chromatic number of graphs and prove that these are compatible with a conjecture of Burris and Schelp 8 . We also find upper bounds on this number for certain regular graphs G of low degree and hence verify the conjecture for a reasonably large class of such graphs. © 2002 Wiley Periodicals, Inc. J Graph Theory 42: 95–109, 2003  相似文献   

17.
We determine all locally compact imprimitive transformation groups acting sharply 2‐transitively on a non‐totally disconnected quotient space of blocks inducing on any block a sharply 2‐transitive group and satisfying the following condition: if Δ1, Δ2 are two distinct blocks and Pi, Qi ∈ Δi (i = 1, 2), then there is just one element in the inertia subgroup which maps Pi onto Qi. These groups are natural generalizations of the group of affine mappings of the line over the algebra of dual numbers over the field of real or complex numbers or over the skew‐field of quaternions. For imprimitive locally compact groups, our results correspond to the classical results of Kalscheuer for primitive locally compact groups (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
In this article, we consider the Hamilton‐Waterloo problem for the case of Hamilton cycles and triangle‐factors when the order of the complete graph Kn is even. We completely solved the problem for the case n≡24 (mod 36). For the cases n≡0 (mod 18) and n≡6 (mod 36), we gave an almost complete solution. © 2012 Wiley Periodicals, Inc. J. Combin. Designs 20: 305–316, 2012  相似文献   

19.
The randomized k‐number partitioning problem is the task to distribute N i.i.d. random variables into k groups in such a way that the sums of the variables in each group are as similar as possible. The restricted k‐partitioning problem refers to the case where the number of elements in each group is fixed to N/k. In the case k = 2 it has been shown that the properly rescaled differences of the two sums in the close to optimal partitions converge to a Poisson point process, as if they were independent random variables. We generalize this result to the case k > 2 in the restricted problem and show that the vector of differences between the k sums converges to a k ‐ 1‐dimensional Poisson point process. © 2006 Wiley Periodicals, Inc. Random Struct. Alg., 2007  相似文献   

20.
We consider 2‐factorizations of complete graphs that possess an automorphism group fixing k?0 vertices and acting sharply transitively on the others. We study the structures of such factorizations and consider the cases in which the group is either abelian or dihedral in some more details. Combining results of the first part of the paper with a result of D. Bryant, J Combin Des, 12 (2004), 147–155, we prove that the class of 2‐factorizations of complete graphs is universal. Namely each finite group is the full automorphism group of a 2‐factorization of the class. © 2009 Wiley Periodicals, Inc. J Combin Designs 17: 211‐228, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号