首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of Ag2SO4 and bpp (bpp = 1,3‐bis(4‐pyridyl)propane) in H2O afforded the complex [Ag2(bpp)2(SO4) · 6.5H2O·CH3OH]n, 1. The IR and TGA have been recorded and the structure has been determined. Crystal data for 1: Space group C2/c, a = 17.885(4), b = 25.230(6), c = 8.832(2) Å, β = 105.437(4)°. V = 3841(1) Å3, Z = 8 with final residuals R1 = 0.0710 and wR2 = 0.1620. The complex shows a three‐dimensional supramoleclar structure constructed with two‐dimensional infinite [Ag2(bpp)2]n sheetlike layers pillared by Ag‐Ag interactions and Ag····O (SO4) interactions in the solid state.  相似文献   

2.
Three new coordination polymers, [Zn(PBDC)(bbbm)0.5]n ( 1 ), [Co(PBDC)(bbbm)]n ( 2 ), and [Cd(PBDC)(bbbm)]n ( 3 ) were prepared via hydrothermal reactions of different metal(II) nitrates with flexible 1,3‐bis(4‐phenoxy)benzenedicarboxylic acid (H2L) and 1,1‐(1,4‐butanediyl)bis(benzimidazole) ligand. All these complexes were fully characterized by elemental analysis, FT‐IR, thermogravimetric analysis (TGA), powder X‐ray diffraction, and single‐crystal X‐ray diffraction. Structure analyses revealed that complex 1 has a 2D→2D twofold interpenetrating framework simplified by a 4‐connected sql net with point symbol (44.62), whereas complexes 2 and 3 are isostructural and exhibit a 2D→2D twofold interpenetrating framework rationalized as a three‐connected hcb net with point symbol (63). Complexes 1 – 3 further expand to 3D supramolecular structures through non‐covalent C–H ··· O interactions. Additionally, the luminescent and magnetic properties of some of these complexes were studied. Complex 3 presents ideal photoluminescent behavior, whereas complex 2 shows antiferromagnetic coupling between the central CoII ions, suggesting its latent application in magnetic material.  相似文献   

3.
The reaction of Zn(NO3)2‐6H2O, NH4SCN and bpp (bpp = 1,3‐bis(4‐pyridyl)propane) in CH3OH afforded the complex [Zn(NCS)2(bpp)]n, 1 , while the reaction of Zn(ClO4)2‐6H2O and bpp in CH3OH afforded the complex [Zn(ClO4)2(bpp)2]n, 2 . Both complexes have been characterized by spectroscopic methods and their structures have been determined by X‐ray crystallography. Crystal data for 1 : Orthorhombic, space group P21212, a= 12.857(6), b = 14.822(7), c = 4.820(2) Å, β = 90°, V = 918.5(8) Å3, Z = 2 with final residuals R1 = 0.0747 and wR2 = 0.1657. Crystal data for 2 : Tetragonal, space group I4/mcm, a = 11.612(1), b = 11.612(1), c = 23.247(9) Å, β = 90°, V = 3135(1) Å3, Z = 4 with final residuals R1 = 0.0523 and wR2 = 0.1064. The coordination polymers display a variety of structural architectures, ranging from zigzag chains ( 1 ) and one‐dimensional channel‐type architectures ( 2 ). The effects of the orientation of the nitrogen atom in the pyridine rings on the resultant structures are discussed.  相似文献   

4.
The reaction of (Z)‐2‐[amino(pyridine‐2‐yl)methylene]hydrazonecarbothioamide (HAm4DH) with Mn(ClO4)2·6H2O afforded different mononuclear or polynuclear manganese(II) complexes, the nature of which apparently depended on the solvent used. For example, in ethanol a compound of formula [Mn(HAm4DH)2](ClO4)2 ( 1 ) was obtained, where HAm4DH coordinates as a common tridentate NNS donor, but the [Mn(bpy)2(NCS)2] complex ( 2 ) (bpy = 2,2'‐bipyridine) has also been obtained – probably due to C–N bond cleavage of the thiosemicarbazone. Nevertheless, in a basic aqueous medium [Mn(bpy)3](ClO4)2·0.5bpy ( 3 ) is formed and there is structural evidence for chemical transformations of the thiosemicarbazone promoted by MnII. Thus, the sulfate in {[Mn(py)4Mn(py)2(H2O)2(μ‐SO4)2]·4H2O}n ( 4 ) or sulfate and cyclooctasulfur in [Mn(pta)2(pdo)]4(SO4)2·4H2O·S8] ( 5 ), where pta is 3‐(pyridin‐2‐yl)‐1,2,4‐triazol‐5‐amine and pdo is (2R,4R/2S,4S)‐pentane‐2,4‐diolato, arise from the desulfuration and oxidation of the thiosemicarbazone ligand. The structures of complexes 2 to 5 were established by single‐crystal X‐ray diffraction. The formation of pta is the result of the oxidative cyclization of HAm4DH. In the polynuclear complex 4 , the sulfate acts as an (O,O') bridge between alternating Mn(py)2(H2O)2 and Mn(py)4 centers. In the tetranuclear complex 5 , pta acts as a bischelating ligand through the N‐pyridine and N‐triazole, and pdo act as a bridge between two manganese atoms. It is also noteworthy that in complexes 4 and 5 hydrogen bonds give rise to different self‐assembly behaviour that leads to complicated supramolecular structures.  相似文献   

5.
A pair of novel thiocyanate‐bridged polynuclear copper(II) complexes, [Cu2(BCP)2(NCS)2]n ( 1 ) and [Cu2(BCP)2(MeOH)(NCS)2]2 ( 2 ) [BCP = 4‐bromo‐2‐(cyclopropyliminomethyl)phenolate], have been obtained from an identical synthetic procedure and starting materials using solvents as the only independent variable. Complex 1 was synthesized and crystallized using EtOH as the solvent, while complex 2 was synthesized and crystallized using MeOH as the solvent. Both complexes show novel self‐assembled supramolecular structures in their crystals as elucidated by X‐ray analyses. The polymeric dinuclear complex 1 contains [Cu2(BCP)2(NCS)2] units as the building blocks, crystallizes in the Pbca space group. The monomeric tetranuclear complex 2 contains [Cu2(BCP)2(MeOH)(NCS)2] units as the building blocks, crystallizes in the P21/n space group.  相似文献   

6.
以醋酸锌、异烟肼(INH)、2-氨基吡啶(2-APy)为原料在N,N-二甲基甲酰胺(DMF)溶液中合成了2个Zn(Ⅱ)配位聚合物[Zn(CH3COO)2(INH)]n1),[Zn(CH3COO)2(2-APy)]n2),用红外光谱、元素分析、粉末X射线衍射、X射线单晶衍射对配合物进行了表征。晶体结构测试表明,配聚物1属单斜晶系,空间群P21/c,晶胞参数:a=0.914 44(17)nm,b=0.161 86(3)nm,c=0.871 75(16)nm,β=96.181(3)°,V=1.282 8(4)nm3,Z=4;配聚物为2D层状结构,该层状结构通过氢键弱相互作用,进一步形成3D超分子结构。配聚物2属三斜晶系,空间群P1,晶胞参数:a=0.747 0(4)nm,b=0.814 5(5)nm,c=1.895 7(11)nm,α=88.276(8)°,β=86.202(8)°,γ=84.334(8)°,V=1.144 9(11)nm3,Z=2;配聚物2为一维zig-zag链状结构。室温固态荧光测试显示,配聚物12分别在最大波长382.6和367.5 nm处具有较强的荧光发射。  相似文献   

7.
Tightly linked! A linear array of complementary hydrogen bonds forms between two 2‐ureidopyrimidin‐4(1H)‐one rings attached to the upper rims of facing 1,3‐alternate calix[4]arenes (shown schematically). The strength of the binding (Kass>106 M −1 in chloroform) and the efficiency of the self‐assembly open up interesting perspectives in the design of highly ordered multicomponent cages.  相似文献   

8.
The coordination polymers, {[Co(bbim)2(H2O)2](tcbdc) · 2H2O}n ( 1 ), {[Ni(tcbdc)(bbim)(H2O)2] · 2DMF}n ( 2 ), and {[Cu2(tcbdc)2(bbim)4] · 4H2O}n ( 3 ) [bbim = 1,1′‐(1,4‐butanediyl)bis(imidazole) and tcbdc2– = tetrachlorobenzene‐1,4‐dicarboxylate] were synthesized and characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis, luminescence, and single‐crystal X‐ray diffraction analysis. Complex 1 has a double‐stranded chain structure through doubly bridged [Co(bbim)2] units. Complex 2 exhibits two‐dimensional square grid, whereas complex 3 has a three‐dimensional porous network structure with an unprecedented 44 · 611 topological structure through interpenetrating square grid. The water molecules in complex 3 occupy the vacancy through three kinds of hydrogen bond interactions. Upon excitation at 370 nm, complexes 1 – 3 present solid‐state luminescence at room temperature.  相似文献   

9.
Two zinc(II) compounds, namely [Zn5(AmTAZ)6(OH)2]n · 2n(NO3) · 6n(H2O) ( 1 ) and [Zn3(AmTAZ)2(mal)2]n ( 2 ) (HAmTAZ = 3‐amino‐1,2,4‐triazole, H2mal = malonic acid), were hydrothermally synthesized and characterized by elemental analysis, IR spectroscopy, and X‐ray diffraction. Single crystal X‐ray diffraction analysis reveals that compound 1 features a 3D framework with dodecahedral cages occupied by free nitrate ions and lattice water molecules and can be reduced into a (4, 8)‐connected flu topological network. Compound 2 features a 3D framework based on two different 1D chains. Moreover, the thermal stabilities and luminescent properties of compounds 1 and 2 were investigated.  相似文献   

10.
Complex [Cu(2,2′‐bipy)(H2L1)] (ClO4)2(1) has been synthesized by the self‐assembly of Cu(ClO4)2 with a rigid ligand 2,2′‐bipyridine and a flexible potential tetradentate ligand N, N'‐bis(hydroxyethyl)ethylenediamine (H2L1). Crystal analyses reveal that the potentially tetradentate ligand H2L1 acts in a tridentate mode by the coordination of one hydroxyl oxygen atom and two amino nitrogen atoms. The Cu(II) atom coordinates additionally with two bipyridyl nitrogen atoms, giving a distorted square pyramidal geometry. Each complex molecule is connected with four surrounding molecules along the ac plane by multiple hydrogen bonds, leading to 2D sheets constituted with 0.7874 nm × 1.0891 nm metallomacrocyclic rectangles. Each vertex of the rectangle is occupied by a copper atom, and the four sides are comprised of multiple hydrogen bonds.  相似文献   

11.
Sodium in dry methanol reduces 2‐cyanopyridine in the presence of 3‐hexamethyleneiminylthiosemicarbazide and produces 2‐pyridineformamide 3‐hexamethyleneiminylthiosemicarbazone, HAmhexim ( 1 ). Complexes with zinc(II ), cadmium(II ) and mercury(II ) have been prepared and characterized by spectroscopic techniques. In addition, the crystal structures of HAmhexim ( 1 ), [Zn(Amhexim)(OAc)]2μ·μDMSO ( 2 ), [Cd(HAmhexim)Cl2]μ·μDMSO ( 7 ), [Cd(Amhexim)2] ( 8 ), [Cd(HAmhexim)Br2]μ·μDMSO ( 9 ), [Cd(HAmhexim)I2]μ·μEtOH ( 10 ), [Hg(HAmhexim)Cl2]μ·μDMSO ( 11 ), [Hg(Amhexim)Br]2 ( 13 ), [Hg3(HAmhexim)(Amhexim)Br5]μ·μH2O ( 14 ) and [Hg(Amhexim)I]2 ( 15 ) have been determined. Coordination of the anionic and neutral thiosemicarbazone ligand occurs through the pyridine nitrogen atom, imine nitrogen atom, and thiolato or thione sulfur atom. In [Zn(Amhexim)(OAc)]2 one of the bridging acetato ligands has monodentate coordination and the other bridges in a bidentate manner. [Cd(Amhexim)2] is a 6‐coordinate species while the other cadmium complexes are 5‐coordinate. In [Hg(Amhexim)Br]2 and [Hg(Amhexim)I]2 the thiolato sulfur atoms act as bridges between the Hg atoms to form dimeric compounds and [Hg3(HAmhexim)(Amhexim)Br5]μ·μH2O is a trinuclear complex with three different centers — two metallic centers have a 5‐coordination and the another one has 4‐coordination. In addition, [Hg(HAmhexim)Cl2]μ·μDMSO and [Hg3(HAmhexim)(Amhexim)Br5]μ·μH2O shown a supramolecular one‐dimensional hydrogen‐bonded self‐assembling.  相似文献   

12.
Three novel Schiff base cadmium(II) complexes, derived from the end‐on (μ‐1,1‐N3) azide or end‐to‐end (μ‐1,3‐NCS) thio cyanate bridges and similar tridentate Schiff base ligands, have been synthesized under similar synthetic procedures and their crystal structures determined by X‐ray diffraction methods. They are the dinuclear double end‐on azide‐bridged [Cd2(L1)2(N3)2(μ‐1,1‐N3)2] ( 1 ), the dinuclear double end‐on azide‐bridged [Cd2(L2)2(N3)2(μ‐1,1‐N3)2] ( 2 ), and the dinuclear double end‐to‐end thiocyanate‐bridged [Cd2(L3)2(NCS)2(μ1,3‐NCS)2] ( 3 ), where L1, L2 and L3 are three similar tridentate Schiff bases obtained by condensation of 2‐pyridylaldehyde with N,N‐diethylethane‐1,2‐diamine, of 2‐pyridylaldehyde with N‐isopropylethane‐1,2‐diamine, and of 2‐pyridylaldehyde with N,N‐dimethylpropane‐1,3‐diamine, respectively. Each cadmium(II) centre in the complexes is in a distorted octahedral coordination. There is a crystallographic inversion centre in each of the complexes. The similar small ligands used as the secondary ligands in the preparation of the cadmium(II) complexes with similar Schiff bases can result in similar structures.  相似文献   

13.
Water‐soluble three‐dimensional (3D) polymers are structurally ideal for the construction of ordered porous materials for in‐situ and tunable loading and release of guests. For many years, studies on ordered porous materials have been confined to crystalline solids. Since 2014, self‐assembly has been developed as a robust strategy for the preparation of water‐soluble 3D polymers that possess defined and intrinsic porosity. Through the encapsulation of cucurbit[8]uril for aromatic dimers, ordered diamondoid supramolecular organic frameworks can be assembled from tetrahedral monomers. With [Ru(bipy)3]2+‐derived octahedral complexes as precursors, cubic supramolecular metal‐organic frameworks have been assembled. One supramolecular organic framework has also been utilized to prepare the first homogeneous covalent organic framework through the [2+2] alkene cycloaddition, whereas the quantitative formation of the hydrazone bonds can be utilized to synthesize flexible porous organic frameworks. The new water‐soluble ordered and flexible polymeric frameworks are able to include drugs and biomacromolecules to accomplish in situ loading and intracellular delivery and to enrich photosensitizers and catalysts to enhance discrete visible light‐induced reactions. This review highlights the advances.  相似文献   

14.
A series of meso‐tetrakis‐(ERE donor) zinc(II) porphyrins n Zn (ERE donor=4‐R‐3,5‐bis[(E)‐methyl]phenyl; 1 Zn: E=NMe2, R=Br; 2 Zn: E=NMe2, R=H; 3 Zn: E=OMe, R=Br; 4 Zn: E=OMe, R=H) have been synthesized in excellent yields. As a result of the combination of a Lewis acidic site and eight Lewis basic sites within one molecule, monomeric molecules of n Zn self‐assemble to form one‐dimensional porphyrin polymers [ n Zn] in the solid state, as confirmed for 1 Zn and 3 Zn by X‐ray crystallography. The coordination environment around the zinc(II) ions in these polymers is octahedral. They are ligated by four equatorial nitrogen atoms of the porphyrin and two apical E atoms (E=N, O) provided by the EBrE donor groups of adjacent n Zn molecules. Complexes 2 Zn and 4 Zn did not form single crystals, but solid‐state UV/Vis analysis points to the formation of similar structures. Solution UV/Vis and 1H NMR spectroscopy indicated that interactions between 1 Zn and 2 Zn monomers in the polymers are stronger than between 3 Zn and 4 Zn monomers. Interestingly, they also revealed that the presence of a neighboring bromine atom in the EBrE donor groups has a considerable influence on the coordination properties of the benzylic N or O atoms. The zinc(II) ions of the porphyrins most likely adopt only hexacoordination in the solid state, owing to the unique predisposition of Lewis acidic and basic sites in the n Zn molecules. Several parameters of the aggregates, for example, the interplanar separation between porphyrins and the zinc–zinc distances, change as a function of the coordinating E groups. The high degree of modularity in their synthesis makes these zinc(II) porphyrins an interesting new entry in noncovalent multiporphyrin assemblies.  相似文献   

15.
Monomeric zinc(II) and mercury(II) complexes containing tripodal nitrogen donor ligand 2,6‐bis(3,4,5‐trimethyl‐N‐pyrazolyl)pyridine (btmpp) were synthesized, and characterized by elemental and spectroscopic (IR, UV/Vis) analyses, TG‐DTA and single‐crystal X‐ray diffraction studies. X‐ray analyses of the complexes [Zn(btmpp)Cl2] ( 2 ) and [Hg(btmpp)(SCN)2] ( 3 ) showed that both structures crystallize in space group P21/c with a = 7.9722(6), b = 18.3084(13), c = 13.3117(9) Å and Z = 4 for 2 and a = 8.7830(3), b = 21.1489(7), c = 12.0682(4) Å and Z = 4 for 3 . Both monomeric units contain pentacoordinate metal ions in distorted square‐pyramidal arrangement. The structures of complexes 2 and 3 were also computed with DFT methods at B3LYP/LanL2DZ level and are in good agreement with the experimental values obtained from X‐ray analysis. The NPa charge distributions, HOMO–LUMO gaps, and dipole moments for 1 , 2 , and 3 were also reported. Natural bond orbital analyses were performed to reveal local charges and charge transfers in 1 , 2 , and 3 .  相似文献   

16.
The reactions of 1,2‐bis(diphenylphosphanyl)ethane (dppe) with different silver(I) salts facilitated the formation of 1D and 2D coordination polymers, [Ag(dppe)(OAc)]n · nH2O ( 1 ) and [Ag2(dppe)1.5(NO3)2]n ( 2 ), respectively. The complexes were characterized by elemental analysis, ATR‐IR spectroscopy, 1H NMR, 13C NMR, and 31P NMR spectroscopy, and single‐crystal X‐ray diffraction. Structural analysis revealed that complex 1 exhibits a 1D infinite wavy structure, in which each silver(I) ion is bridged by dppe ligands. Structure 2 has a 2D topologically promising architecture that displays a 6.6.6 graphitic net, which corresponds to hnd topology. The nitrate ions and dppe ligands are in a μ2 bridging mode and support the formation of this net. Moreover, significant π–π interactions between the phenyl rings in the apertures of (6,3) grid stabilized complex 2 .  相似文献   

17.
New complexes:Zn(Hsalox)(ox), Zn(Hsalox)(NHPh), Zn(Hsalox)(Hsal) and Zn(Hsalox)2(1,2-diMeim) have been synthesised as a result of a reaction of Zn(salox) and Zn(Hsalox)2 (where: salox 2–=OC6H4CHNO2–, Hsalox =OC6H4CHNOH) with 8-hydroxyquinoline (Hox), o-aminophenol (NH2Ph), o-hydroxybenzoic acid (H2Sal) and 1,2-dimethylimidazole (1,2-diMeim). Chemical, X-ray and thermal analyses of the complexes and their sinters have been carried out. Thermal decomposition pathways have been postulated for the complexes. The mixtures about not definite composition have been obtained as a result of a reaction of zinc(o-hydroxybenzaldoximates) with imidazole(Him) and 4-methylimidazole (4-MeHim). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Mercury(II) complexes with 4,4′‐bipyridine (4,4′‐bipy) ligand were synthesized and characterized by elemental analysis, and IR, 1H‐ and 13C‐NMR spectroscopy. The structures of the complexes [Hg3(4,4′‐bipy)2(CH3COO)2(SCN)4]n ( 1 ), [Hg5(4,4′‐bipy)5(SCN)10]n ( 2 ), [Hg2(4,4′‐bipy)2(CH3COO)2]n(ClO4)2n ( 3 ), and [Hg(4,4′‐bipy)I2]n ( 4 ) were determined by X‐ray crystallography. The single‐crystal X‐ray data show that 2 and 4 are one‐dimensional zigzag polymers with four‐coordinate Hg‐atoms, whereas 1 is a one‐dimensional helical chain with two four‐coordinate and one six‐coordinate Hg‐atom. Complex 3 is a two‐dimensional polymer with a five‐coordinate Hg‐atom. These results show the capacity of the Hg‐ion to act as a soft acid that is capable to form compounds with coordination numbers four, five, and six and consequently to produce different forms of coordination polymers, containing one‐ and two‐dimensional networks.  相似文献   

19.
The reactions of Cd(NO3)2·4H2O with NH4SCN and 2,4‐dpa (2,4‐dpa = 2,4‐dipyridineamine) in CH3OH afforded the one‐dimensional coordination polymer [Cd(NCS)2(2,4‐dpa)2]n, 1 , while reaction of Cd(NO3)2·4H2O with NH4SCN and PmPa (PmPa = 2‐(1‐piperazinyl)pyrimidine) in CH3OH gave complex of the type [Cd(NCS)2(PmPa)2]n, 2. Each of the 2,4‐dpa ligand in complex 1 is coordinated to the Cd2+ metal center through pyridyl nitrogen atoms to form the one‐dimensional chain structures. The distorted {CdN4S2} octahedral coordination geometry around Cd2+ center is completed by pairs of bidentate thiocyanato ligands. Complex 2 has the 1‐D arrangement constructed through one‐dimensional double μ(N,S) end‐to‐end bridging thiocyanato groups bridged Cd(II) chains interconnected through PmPa ligands.  相似文献   

20.
Two new fluorescent coordination polymers based on pamoic acid and different polydentate N-donor ligands, namely {[Cd(PA)(TPTZ)(H2O)](DMF)2}n ( 1 ) and [Cd(PA)(BIB)]n ( 2 ) [H2PA = pamoic acid, TPTZ = 2,4,6-tri(2-pyridyl)-1,3,5-triazine, BIB = 1,4-bis(1-imidazolyl)benzene], were synthesized and characterized. Complex 1 showed a 1D zigzag chain structure with intramolecular hydrogen bonds. The 2D supramolecular structure in 1 was formed through π–π stacking interactions and intermolecular hydrogen bonds. Complex 2 displayed a 2D network structure. Intramolecular hydrogen bonds and π–π stacking interactions were observed in 2 . By studying the fluorescence sensing performance of two coordination polymers, complex 1 exhibited high selectivity for tracking Al3+ ion and complex 2 could discriminately detect inorganic or aliphatic amines with high selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号