首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of the quinoxaline N‐oxides 7a,b with diethyl ethoxymethylenemalonate gave the 1‐methylpyridazino[3,4‐b]quinoxaline‐4,4‐dicarboxylates 8a,b , whose reaction with N‐bromosuccinimide or N‐chlorosuccinimide afforded the 3‐halogeno‐1‐methylpyridazino[3,4‐b]quinoxaline‐4,4‐dicarboxylates 9a‐d. The reaction of compounds 9a‐d with hydrazine hydrate resulted in hydrolysis and decarboxylation to provide the 3‐halogeno‐1‐methylpyridazino[3,4‐b]quinoxaline‐4‐carboxylates 10a‐d , whose reaction with nitrous acid effected oxidation to furnish the 3‐halogeno‐4‐hydroxy‐1‐methylpyridazino[3,4‐b]quinoxaline‐4‐carboxylates 11a‐d , respectively. The reaction of compounds 11a‐d with hydrazine hydrate afforded the 3‐halogeno‐1‐methylpyridazino[3,4‐b]quinoxalin‐4‐ols 12a‐d , whose oxidation provided the 3‐halogeno‐1‐methylpyridazino[3,4‐b]quinoxalin‐4(1H)‐ones 6a‐d , respectively. Compounds 6a‐d had antifungal activities in vitro.  相似文献   

2.
The 3‐amino‐1‐methylpyridazino[3,4‐b]quinoxalin‐4(1H)‐one 6 and N‐(1,4‐dihydro‐1‐methyl‐4‐oxopyridazino[3,4‐b]quinoxalin‐3‐yl)carbamates 17a,b were synthesized from the 1,4‐dihydro‐1‐methyl‐4‐oxopyridazino[3,4‐b]quinoxa‐line‐3‐carboxylate 1b via the 1,5‐dihydro‐4‐hydroxy‐1‐methylpyridazino[3,4‐b]quinoxaline‐3‐carbohydrazide 13b and then 1,4‐dihydro‐1‐methyl‐4‐oxopyridazino[3,4‐b]quinoxaline‐3‐carboxazide 8 . Heating of compound 13b and arylalde‐hydes afforded the 1,4‐dihydro‐1‐methyl‐4‐oxopyridazino[3,4‐b]quinoxaline‐3‐carbo(2‐arylmethylene)hydrazides 14a‐d.  相似文献   

3.
The present study describes the synthesis of phenanthro[3,4‐b]thiophene (3) , phenanthro[4,3‐b]thiophene (4) and its potential dihydrodiol metabolites, trans‐6,7‐dihydroxy‐6,7‐dihydrophenanthro[3,4‐b]thiophene (5) and trans‐8,9‐dihydroxy‐8,9‐dihydrophenanthro[3,4‐b]thiophene (6) , trans–6,7‐dihydroxy‐6,7‐dihydro‐phenanthro[4,3‐b]thiophene (7) and trans‐8,9‐dihydroxy‐8,9‐dihydrophenanthro[4,3‐b]thiophene (8) from Suzuki coupled intermediates. The UV spectra of these dihydrodiols are presented. These spectra are useful tools for identifying these dihydrodiols among unknown metabolites of 1 and 2 produced in vitro or in vivo.  相似文献   

4.
A one‐pot, four‐component reaction for the efficient synthesis of novel spiro[indeno[2,1‐b]quinoxaline‐11,4′‐pyran]‐2′‐amines by using InCl3 is described. The syntheses are achieved by reacting ninhydrin with 1,2‐diaminobenzenes to give indenoquinoxalines, which are trapped in situ by alkyl malonates and various α‐methylencarbonyl compounds through cyclization, providing multifunctionalized spiro‐substituted indeno[2,1‐b]quinoxaline‐11,4′‐pyran‐2′‐amines.  相似文献   

5.
The reaction of ethyl‐3‐mercaptoquinoxaline‐2‐carboxylate with phenacyl bromide, ethyl chloroacetate, chloroacetonitrile or chloroacetone furnished the corresponding 3‐hydroxy thieno[2,3‐b]quinoxaline. 2‐Cyano‐3‐hydroxythieno[2,3‐b]quinoxaline and 2‐acetyl‐3‐hydroxythieno[2,3‐b]quinoxa line were employed as precursors in the synthesis of some novel furo[2′,3′:4,5]thieno[2,3‐b]quinoxaline, pyrano[2′,3′:4,5]thieno[2,3‐b]quinoxaline and other heterocyclic systems fused with thieno[2,3‐b]quinoxalines. The antibacterial and antifungal activities of some the synthesised compounds were studied.  相似文献   

6.
The reaction of compound 2‐amino‐3‐cyano‐6‐methylquinoxaline‐1,4‐dioxide with cyclohexanone and dimedone in dimethylformamide in the presence of anhydrous ZnCl2 under Friedländer‐type cyclocondensation gave compounds 12‐amino‐9‐methyl‐1,2,3,4,12,12a‐hexahydroquinolino[2,3‐b]quinoxaline‐6,11‐dioxide ( 4 ), 7‐methyl‐4‐oxo‐3,4‐dihydro‐1H‐spiro[benzo[g]pteridine‐2,1′‐cyclohexane]5,10‐dioxide ( 5 ), and 12‐amino‐3,3,9‐trimethyl‐1‐oxo‐1,2,3,4,12,12a‐hexahydroquinolino[2,3‐b]quinoxaline‐6,11‐dioxide ( 6 ); (R)‐3′,3′,7‐trimethyl‐4,5′‐dioxo‐3,4‐dihydro‐1H‐spiro[benzo[g]pteridine‐2,1′‐cyclohexane]5,10‐dioxide ( 7 ) were achieved and evaluated their biological activity as antibacterial and antifungal activities and antitumor evaluation, and also, the density functional theory calculations were evaluated.  相似文献   

7.
A sequential one‐pot four‐component reaction for the efficient synthesis of novel 2′‐aminospiro[11H‐indeno[1,2‐b]quinoxaline‐11,4′‐[4H]pyran] derivatives 5 in the presence of AcONH4 as a neutral, inexpensive, and dually activating catalyst is described (Scheme 1). The syntheses are achieved by reacting ninhydrin ( 1 ) with benzene‐1,2‐diamines 2 to give indenoquinoxalines, which are trapped in situ by malono derivatives 2 and various α‐methylenecarbonyl compounds 4 through cyclization, providing the multifunctionalized 2′‐aminospiro[11H‐indeno[1,2‐b]quinoxaline‐11,4′‐[4H]pyran] analogs 5 . This chemistry provides an efficient and promising synthetic way of proceeding for the diversity‐oriented construction of the spiro[indenoquinoxalino‐pyran] skeleton.  相似文献   

8.
A series of four phenanthro[4,5‐fgh]quinoxaline‐fused subphthalocyanine derivatives 0 – 3 containing zero, one, two, and three phenanthro[4,5‐fgh]quinoxaline moieties, respectively, were isolated from the mixed cyclotrimerization reaction of 2,9‐di‐tert‐butylphenanthro[4,5‐fgh]quinoxaline‐5,6‐dicarbonitrile with 4,5‐bis(2,6‐diisopropylphenoxy)phthalonitrile and characterized by a series of spectroscopic methods including MALDI‐TOF mass, 1H NMR, electronic absorption, magnetic circular dichroism (MCD), and fluorescence spectroscopy. The molecular structures for the compounds 0 and 2 were clearly revealed on the basis of single‐crystal X‐ray diffraction analysis. Their electrochemical properties were also studied by cyclic voltammetry. In particular, theoretical calculations in combination with the electronic absorption and electrochemical analyses revealed the significant influence of the fused‐phenanthro[4,5‐fgh]quinoxaline units on the electronic structures.  相似文献   

9.
Novel 11‐amino‐6‐aryl‐6,7‐dihydroindeno[1,2‐e] pyrimido[4,5‐b][1,4]diazepin‐5(5aH)‐ones 4a‐f were prepared regioselectively by the tricomponent reaction of 4,5,6‐triaminopyrimidine 1, 1,3‐indandione 2 and aromatic aldehydes 3a‐f. The bicomponent approach, using 2,4,5,6‐tetraaminopyrimidine 5 and 2‐aryl‐ideneindandiones 6a‐f as reagents, afforded 9,11‐diamino‐6‐aryl‐6,7‐dihydroindeno[1,2‐e]pyrimido[4,5‐b]‐[1,4]diazepin‐5(5aH)‐ones 7a‐f in good yields and the regioisomeric 8,10‐diamino derivatives 8a‐c in lower yields. Both, bi‐ and tricomponent approaches were performed by microwave irradiation and all products were fully characterized by detailed NMR measurements.  相似文献   

10.
The reaction of the quinoxaline N‐oxide 1 with thiophene‐2‐carbaldehyde gave 6‐chloro‐2‐[1‐methyl‐2‐(2‐thienylmethylene)hydrazino]quinoxaline 4‐oxide 5 , whose reaction with 2‐chloroacrylonitrile afforded 8‐chloro‐2,3‐dihydro‐4‐hydroxy‐1‐methyl‐3‐(2‐thienyl)‐1H‐1,2‐diazepino[3,4‐b]quinoxaline‐5‐carbonitrile 6 . The reaction of compound 6 with various alcohols in the presence of a base effected alcoholysis to provide the 5‐alkoxy‐8‐chloro‐2,3,4,6‐tetrahydro‐1‐methyl‐4‐oxo‐3‐(2‐thienyl)‐1H‐1,2‐diazepino[3,4‐b]‐quinoxalines 7a‐d . The reaction of compounds 7a and 7b with diethyl azodicarboxylate effected dehydrogenation to give the 5‐alkoxy‐8‐chloro‐4,6‐dihydro‐1‐methyl‐4‐oxo‐3‐(2‐thienyl)‐1H‐1,2‐diazepino[3,4‐b]‐quinoxalines 8a and 8b , respectively. Compounds 8a and 8b were found to show good algicidal activities against Selenastrum capricornutum and Nitzchia closterium.  相似文献   

11.
The reaction of the 2‐(1‐alkylhydrazino)‐6‐chloroquinoxaline 4‐oxides 1a,b with diethyl acetone‐dicarboxylate or 1,3‐cyclohexanedione gave ethyl 1‐alkyl‐7‐chloro‐3‐ethoxycarbonylmethylene‐1,5‐dihydropyridazino[3,4‐b]quinoxaline‐3‐carboxylates 5a,b or 6‐alkyl‐10‐chloro‐1‐oxo‐1,2,3,4,6,12‐hexahydroquinoxalino[2,3‐c]cinnolines 7a,b , respectively. Oxidation of compounds 5a,b with nitrous acid afforded the ethyl 1‐alkyl‐7‐chloro‐3‐ethoxycarbonylmethylene‐4‐hydroxy‐1,4‐dihydropyridazino‐[3,4‐b]quinoxaline‐4‐carboxylates 9a,b , whose reaction with base provided the ethyl 2‐(1‐alkyl‐7‐chloro‐4‐oxo‐1,4‐dihydropyridazino[3,4‐b]quinoxalin‐3‐yl)acetates 6a,b , respectively. On the other hand, oxidation of compounds 7a,b with N‐bromosuccinimide/water furnished the 4‐(1‐alkyl‐7‐chloro‐4‐oxo‐1,4‐dihydropyridazino[3,4‐b]quinoxalin‐3‐yl)butyric acids 8a,b , respectively. The reaction of compound 8a with hydroxylamine gave 4‐(7‐chloro‐4‐hydroxyimino‐1‐methyl‐1,4‐dihydropyridazino[3,4‐b]quinoxalin‐3‐yl)‐butyric acid 12 .  相似文献   

12.
A novel efficient synthesis of 2-styrylthiazolo[4,5-b]quinoxaline based fluorescent dyes was achieved by the condensation of 2-alkylthiazolo[4,5-b]quinoxaline with selected 4-N,N-dialkylamino-substituted aryl-aldehydes or hetarylaldehydes in the presence of piperidine or acid anhydride. The coloristic, fluorophoric and dyeing properties of these dyes were studied.  相似文献   

13.
Sterically hindered 1,4‐dihydropyrrolo[3,2‐b]pyrroles possessing ortho‐(arylethynyl)phenyl substituents at positions‐2 and ‐5 were efficiently synthesized through a sila‐Sonogashira reaction. These unique Z‐shaped dyes showed relatively strong fluorescence in solution. Detailed optimization revealed that, in the presence of InCl3, these alkynes readily undergo an intramolecular double cyclization to give hexacyclic products bearing an indolo[3,2‐b]indole skeleton in remarkable yields. Steady‐state UV–visible spectroscopy revealed that upon photoexcitation, the prepared Z‐shaped alkynes undergo mostly radiative relaxation leading to high fluorescence quantum yields. In the case of 7,14‐dihydrobenzo[g]benzo[6,7]indolo[3,2‐b]indoles, we believe that the substantial planarization of geometry in the excited state, is the underlying reason for the observed large Stokes shifts. The presence of additional electron‐withdrawing groups makes it possible to further alter the photophysical properties. The two‐photon absorption cross‐section values of both families of dyes were found to be modest and the nature of the excited state responsible for two‐photon absorption appeared to be strongly affected by the presence of peripheral groups. Serendipitous synthesis of unusual double‐Z‐shaped alkyne by Sonogashira and Glaser coupling is also reported.  相似文献   

14.
The 3‐heteroaryl‐1‐methylpyridazino[3,4‐b]quinoxalin‐4(1H)‐ones 6a‐e were synthesized by the oxidative‐hydrolytic ring transformation of the 3‐heteroaryl‐1,2‐diazepino[3,4‐b]]quinoxaline‐5‐carbonitriles 9a‐c , which were obtained by the 1,3‐dipolar cycloaddition reaction of the 2‐(2‐heteroarylmethylene‐1‐methylhydrazino)quinoxaline 4‐oxides with 2‐chloroacrylonitrile. The assignment of the thiophene and furan ring protons was carried out through the data of the NOE, decoupling, and coupling constants.  相似文献   

15.
The reaction of the alkylhydrazinoquinoxaline N‐oxides 2a‐d with dimethyl acetylenedicarboxylate gave the dimethyl 1‐alkyl‐1,5‐dihydropyridazino[3,4‐b]qumoxaline‐3,4‐dicarboxylates 3a‐d , whose reaction with nitrous acid effected the C4‐oxidation to afford the dimethyl 1‐alkyl‐4‐hydroxy‐1,4‐dihydropyridazino‐[3,4‐b]quinoxaline‐3,4‐dicarboxylates 4a‐d , respectively. The reaction of compounds 4a‐d with 1,8‐diazabicyclo[5.4.0]‐7‐undecene in ethanol provided the ethyl 1‐alkyl‐4‐oxo‐1,4‐dihydropyridazino[3,4‐b]quinoxa‐line‐3‐carboxylates 5a‐d , while the reaction of compounds 4a‐d with potassium hydroxide furnished the 1‐alkyl‐4‐oxo‐1,4‐dihydropyridazino[3,4‐b]quinoxaline‐3‐carboxylic acids 6a‐d , respectively. Compounds 6c,d were also obtained by the reaction of compounds 5c,d with potassium hydroxide, respectively.  相似文献   

16.
Two efficient and diastereoselective procedures for the synthesis of (Z)‐6‐(2‐oxo‐1,2‐dihydro‐3H‐indol‐3‐ylidene)‐3,3a,9,9a‐tetrahydroimidazo[4,5‐e]thiazolo[3,2‐b]‐1,2,4‐triazin‐2,7(1H,6H)‐diones by aldol‐crotonic condensation of 1,3‐dimethyl‐3a,9a‐diphenyl‐3,3a,9,9a‐tetrahydroimidazo[4,5‐e]thiazolo[3,2‐b]‐1,2,4‐triazin‐2,7(1H,6H)‐dione with isatins under acidic or basic catalysis are reported. Isomerization in (Z)‐7‐(1‐allyl‐2‐oxo‐1,2‐dihydro‐3H‐indol‐3‐ylidene)‐1,3‐dimethyl‐3a,9a‐diphenyl‐1,3a,4,9a‐tetrahydroimidazo[4,5‐e]thiazolo[2,3‐c]‐1,2,4‐triazin‐2,8(3H,7H)‐dione was observed under basic conditions.  相似文献   

17.
A number of thiosemicarbazones of 2‐acetyl‐imidazo[4,5‐b]pyridine were prepared in order to investigate their in vitro antineoplastic activities. Three compounds: (i) 2‐acetylimidazo[4,5‐b]pyridin‐4‐ sec ‐butyl‐3‐thiosemicarbazone [(A7), NSC674098], (ii) 2‐acetylimidazo[4,5‐b]pyridin‐4‐tert‐butyl‐3‐thiosemi‐carbazone [(A9), NSC674099], (iii) 2‐acetylimidazo[4,5‐b]pyridin‐4‐cyclohexyl‐3‐thiosemicarbozone [(A11), NSC674101] showed remarkable activity against some of the cell lines tested. The Biological Evaluation Committee of N.C.I. determined that further secondary testing should be carried out (these compounds were tested against prostate cancer).  相似文献   

18.
The synthesis of a new series of 5‐oxy‐pyrido[2,3‐b]quinoxaline‐9‐carboxamides 4a‐i and N1,N2‐Bis(5‐oxy‐pyrido[2,3‐b]quinoxaline‐9‐benzoyl)ethylenediamine ( 5 ) is reported starting from 2‐chloro‐3‐nitropyri‐dine. Fundamental steps of the synthetic pathway are i) preparation of 2‐(3‐nitro‐pyridin‐2‐ylamino)benzoic acid ( 1 ) via copper‐catalyzed condensation of 2‐chloro‐3‐nitropyridine with o‐anthranilic acid, ii) intramolecular cyclization of the acid 1 to 5‐oxy‐pyrido[2,3‐b]quinoxaline‐9‐carboxylic acid ( 2b ) upon treatment with concentrated sulfuric acid and oleum and iii) conversion of the acid 2 to the desired amides 4a‐i and 5 . Compounds 4a‐i and 5 are oxygenated azaanalogs of phenazines, a wellknown series of intercalators with cytotoxic activity.  相似文献   

19.
The X‐ray crystal analyses of the two 11‐deoxy‐didehydrohexahydrobenzo[c]phenanthridine‐type alkaloid derivatives 3 and 4 , derived from (±)‐corynoline ( 1 ) and (+)‐chelidonine ( 2 ), established their structures as (±)‐(5bRS,12bRS)‐5b,12b,13,14‐tetrahydro‐5b,13‐dimethyl[1,3]benzodioxolo[5,6‐c]‐1,3‐dioxolo[4,5‐i]phenanthridine ( 3 ) and (+)‐rel‐(12bR)‐7,12b,13,14‐tetrahydro‐13‐methyl[1,3]benzodioxolo[5,6‐c]‐1,3‐dioxolo[4,5‐i]phenanthridine ( 4 ). The conformations of 3 and 4 in CDCl3 were determined on the basis of 1H‐ and 13C‐NMR spectroscopy.  相似文献   

20.
Dehydrative ring closure reactions were carried out on fused 4‐(2‐hydroxyethylamino) (or 2‐hydroxyethoxy or 2‐hydroxyethylthio)pyrimidines ( 2a , 2b , 2c ) to give fused 2,3‐dihydroimidazo[1,2‐c] (or 2,3‐dihydrooxazolo[3,2‐c] or 2,3‐dihydrothiazolo[3,2‐c])pyrimidines. This reaction produced the pentacyclic 1,2,4,5‐tetrahydro[1]benzothieno[2′,3′:6,7]thiepino[4,5‐e]imidazo[1,2‐c]pyrimidine ( 3a ) and 1,2,4,5‐tetrahydro[1]benzothieno[2′,3′:6,7]thiepino[4,5‐e]thiazolo[3,2‐c]pyrimidinium chloride ( 3c ) from the 2‐hydroxyethylamino‐derivative and 2‐hydroxyethylthio‐derivative, respectively. In contrast, 2‐hydroxyethoxy‐derivative ( 2b ) gave the rearrangement product, 3‐(2‐chloroethyl)‐5,6‐dihydro[1]benzothieno[3′,2′:2,3]thiepino[4,5‐d]pyrimidin‐4(3H)‐one ( 4 ). Effects of the synthesized compounds on collagen‐induced platelet aggregation were also evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号