首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The formation kinetics of ferroin is studied under varied acid conditions at 25°C and fixed ionic strength (0.48 mol dm?3) under pseudo‐first‐order conditions with respect to Fe2+ by using the stopped‐flow technique. The reaction followed is first and third order with respect to Fe2+ and 1,10‐phenanthroline (phen)T, respectively. Increasing the acid concentration retarded the reaction, and the reaction rate showed a positive salt effect. The rate‐limiting step involved the complexation of the phen or protonated phen with [Fe(phen)2]2+ complex ion, leading to formation of [Fe(phen)3]2+ ion. The observed retardation of the reaction rate with increasing [H+]0 is due to the increased [phenH+]eq and low reactivity of phenH+ with [Fe(phen)2]2+ complex ion. Simulated curves for the acid variation experiments agreed well with the corresponding experimental curves and the estimated rate coefficients supporting the proposed mechanism. Relatively low energy of activation (26 kJ mol?1) and high negative entropy of activation (?159.8 J K?1 mol?1) agree with the proposed mechanism and the formation of compact octahedral complex ion. © 2008 Wiley Periodicals, Inc. 40: 515–523, 2008  相似文献   

2.
Examined in this study is the kinetics of a net 2e transfer between [Fe2(μ‐O)(phen)4(H2O)2]4+ ( 1 ) and its hydrolytic derivatives [Fe2(μ‐O)(phen)4(H2O)(OH)]3+ ( 2 ) and [Fe2(μ‐O)(phen)4(OH)2]2+ ( 3 ) with in aqueous media and in presence of excess 1,10‐phenanthroline (phen). The reaction is quantitative with a 1 : 1 stoichiometry between the oxidant and reductant to produce ferroin ([Fe(phen)3]2+) and . The order of reactivity of the oxidant species is 1 > 2 > 3 , in agreement with the progressive cationic charge reduction. The reactions appear to be inner‐sphere where the initial one‐electron proton‐coupled redox (1e, 1H+; electroprotic) seems to be rate‐determining.  相似文献   

3.
The encapsulation of tetracyanoquinodimethane (TCNQ) and fluorescent probe acridinium ions (AcH+) by diethylpyrrole‐bridged bisporphyrin (H4DEP) was used to investigate the structural and spectroscopic changes within the bisporphyrin cavity upon substrate binding. X‐ray diffraction studies of the bisporphyrin host (H4DEP) and the encapsulated host–guest complexes (H4DEP ? TCNQ and [H4DEP ? AcH]ClO4) are reported. Negative and positive shifts of the reduction and oxidation potentials, respectively, indicated that it was difficult to reduce/oxidize the encapsulated complexes. The emission intensities of bisporphyrin, upon excitation at 560 nm, were quenched by about 65 % and 95 % in H4DEP ? TCNQ and [H4DEP ? AcH]ClO4, respectively, owing to photoinduced electron transfer from the excited state of the bisporphyrin to TCNQ/AcH+; this result was also supported by DFT calculations. Moreover, the fluorescence intensity of encapsulated AcH+ (excited at 340 nm) was also remarkably quenched compared to the free ions, owing to photoinduced singlet‐to‐singlet energy transfer from AcH+ to bisporphyrin. Thus, AcH+ acted as both an acceptor and a donor, depending on which part of the chromophore was excited in the host–guest complex. The electrochemically evaluated HOMO–LUMO gap was 0.71 and 1.42 eV in H4DEP ? TCNQ and [H4DEP ? AcH]ClO4, respectively, whilst the gap was 2.12 eV in H4DEP. The extremely low HOMO–LUMO gap in H4DEP ? TCNQ led to facile electron transfer from the host to the guest, which was manifested in the lowering of the CN stretching frequency (in the solid state) in the IR spectra, a strong radical signal in the EPR spectra at 77 K, and also the presence of low‐energy bands in the UV/Vis spectra (in the solution phase). Such an efficient transfer was only possible when the donor and acceptor moieties were in close proximity to one another.  相似文献   

4.
In the present study, non-conventional solid acid catalysts such as NaY, metal ion exchanged zeolite NaY (Zn2+, Fe3+, Ce3+, La3+ and Nd3+), H-mordenite, H-β and HZSM-5 were used in order to overcome the disadvantages of conventional Friedel-Crafts catalysts for the acylation of anisole with acetic anhydride. Among the various zeolites studied, the HY zeolite shows an intermediate activity. Zeolite containing transition metal ions (Zn2+ and Fe3+) are less active and zeolite NaY is nearly inactive. The catalysts exhibit the activity in the order H-β>transition metal ions (Zn2+ and Fe3+)>HY>NaY zeolite. The highest catalytic activity of H-β could be due to its larger pore size. The type of acidity and the acid strength in zeolite Y were determined by FTIR and differential scanning calorimetric (DSC) studies on the pyridine adsorbed catalysts. The correlation of catalytic activity with acidity reveals that Brönsted acid sites in zeolite promote the acylation of anisole.  相似文献   

5.
The adsorption and/or decomposition pathway of Fe2(CO)9 or Fe3(CO)12 on hydrated or dehydrated NaY zeolites has been studied by an ESR technique. The adsorption resulted in the formation of three paramagnetic species withg iso=2.0450, 2.0378, and 2.0016, which were attributable to Fe3(CO)11 , Fe2(CO)8 , and Fe(CO)4 anion radicals, respectively. These radicals have been suggested as intermediates in the formation of HFe3(CO)11 on the hydrated NaY zeolite and Fe3(CO)12 on the dehydrated NaY zeolite.  相似文献   

6.
The room-temperature Mössbauer 57Fe spectrum of polycrystalline disordered cubic α-LiFeO2 contains a quadrupole splitting |Δobs| of 0.65(2) mm/sec. This value is relatively large for an Fe atom in an essentially Fe3+HS state. To account for its magnitude, the distribution of the electric-field gradient (EFG) values associated with the Fe atoms was investigated by means of exact geometric analysis involving the 12 nearest cation neighbors (model A) as well as large-scale computer simulation involving more distant cations (models B to E). It is found that (1) the major contribution to |Δobs| comes from the distribution of +1 and +3 charges among the 12 nearest cation neighbors of a reference Fe atom; (2) this contribution by itself largely accounts for |Δobs|; (3) the contribution from cations beyond the seventh-nearest neighbors is marginal; (4) displacing the oxygen atoms from their lattice sites toward adjacent Fe atoms produces a significant effect on the distribution of EFG values at a reference Fe atom, while incipient cation ordering appears to have a relatively small effect; and (5) the contribution of the EFG = 0 component to model |EFG| distributions will be overemphasized unless cations beyond the first-nearest neighbors are included in the EFG summation. The 144 distinct (up to rotation and reflection) Li1+12?kFe3+k configurations on the coordination cuboctahedron of nearest cation neighbors (required for the examination of model A) are listed, together with their symmetries and multiplicities, and it is shown that the 144 configurations engender only 17 distinct |EFG| values. Observations are also made on various geometric aspects of calculating EFG at 57Fe3+HS on cubic lattices.  相似文献   

7.
The ferrocene/NaY zeolite composites (Fc/NaY) are introduced on the surface of a glassy carbon electrode together with the hydrophobic ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6). The modified electrode thus constructed exhibits a pair of reversible redox peaks corresponding to ferrocene. Additionally the peak separation remains almost constant (58–75 mV) and the value of the ratio ipa/ipc is close to 1 for scan rates in the range from 10 to 1000 mV s?1. The effects of the scan rate, aqueous supporting electrolytes, hydrophobic ionic liquid and the contents of ferrocene encapsulated by electrochemistry are investigated. The extrazeolite electron transfer process is discussed. Furthermore, the Fc/NaY/IL‐modified electrode shows good mediation towards oxidation of ascorbic acid, dopamine, hydroquinone, and catechol.  相似文献   

8.
The kinetics of the bromate oxidation of tris(1,10-phenanthroline)iron(II) (Fe(phen)32+) and aquoiron(II) (Fe2+ (aq)) have been studied in aqueous sulfuric acid solutions at μ = 1.0M and with Fe(II) complexes in great excess. The rate laws for both reactions generally can be described as -d [Fe(II)]/6dt = d[Br?]/dt = k[Fe(II)] [BrO?3] for [H+]0 = 0.428–1.00M. For [BrO?3]0 = 1.00 × 10?4M. [Fe2+]0 = (0.724–1.45)x 10?2 M, and [H+]0 = 1.00M, k = 3.34 ± 0.37 M?1s?1 at 25°. For [BrO?3]0 = (1.00–1.50) × 10?4M, [Fe2+]0 = 7.24 × 10?3M ([phen]0 = 0.0353M), and [H+]0 = 1.00M, k = (4.40 ± 0.16) × 10?2 M?1s?1 at 25°. Kinetic results suggest that the BrO?3-Fe2+ reaction proceeds by an inner-sphere mechanism while the BrO?3-Fe(phen)32+ reaction by a dissociative mechanism. The implication of these results for the bromate-gallic acid and other bromate oscillators is also presented.  相似文献   

9.
The host–guest interactions of cationic (AcH+) and neutral (Ac) forms of the dye acridine with the macrocyclic host p‐sulfonatocalix[6]arene (SCX6) were investigated by using ground‐state absorption, steady‐state and time‐resolved fluorescence, and NMR measurements. The cationic form undergoes significant complexation with SCX6 (Keq=2.5×104 M ?1), causing a sharp decrease in the fluorescence intensity and severe quenching in the excited‐state lifetime of the dye. The strong binding of the AcH+ form of the dye with SCX6 is attributed to ion–ion interactions involving the sulfonato groups (SO3?) of SCX6 and the positively charged AcH+ at pH of approximately 4.3. Whereas, the neutral Ac form of the dye undergoes weak complexation with SCX6 (Keq=0.9×103 M ?1) and the binding constant is lowered by one order of magnitude compared with that of the SCX6–AcH+ system. The strong affinity of SCX6 to the protonated form leads to a large upward pKa shift (≈2 units) in the dye. In contrast, strong emission quenching upon SCX6 interaction and the regeneration of fluorescence intensity of the dye in the presence of Gd3+ through competitive binding have also been demonstrated.  相似文献   

10.
In aqueous solution [Fe2(μ-O)(phen)4(H2O)2]4+ (1, phen = 1,10-phenanthroline) equilibrates with its conjugate bases [Fe2(μ-O)(phen)4(H2O)(OH)]3+ (2) and [Fe2(μ-O)(phen)4(OH)2]2+ (3). In the presence of excess phen and in the pH range 2.5–5.5, the dimer quantitatively oxidizes pyruvic acid to acetic acid and carbon dioxide, the end iron species being ferroin, [Fe(phen)3]2+. The observed reaction rate shows a bell-shaped curve as pH increases, but is independent of added phen. Kinetic analysis shows that (3) is non-reactive and (1) has much higher reactivity than (2) in oxidizing pyruvic acid. The basicity of the bridging oxygen increases with deprotonation of the aqua ligands. The reaction rate decreases significantly in media enriched with D2O in comparison to that in H2O, with a greater retardation at higher pH, suggesting the occurrence of proton coupled electron transfer (PCET; 1e, 1H+), which possibly drags the energetically unfavorable reaction to completion in presence of excess phen.  相似文献   

11.
The complex ion [FeIII2(μ‐O)(phen)4(H2O)2]4+ ( 1 ) (phen = 1,10‐phenanthroline) and its hydrolytic derivatives [FeIII2(μ‐O)(phen)4(H2O)(OH)]3+ ( 1a ) and [FeIII2(μ‐O)(phen)4‐ (OH)2]2+ ( 2a ) coexist in rapid equilibria in the range pH 4.23–5.35 in the presence of excess phenanthroline (pKa1 = 3.71±0.03, pKa2 = 5.28± 0.07). The solution reacts quantitatively with I to produce [Fe(phen)3]2+ and I2. Only 1 but none of its hydrolytic derivatives is kinetically active. Both inner and outer sphere pathways operate. The observed rate constants show second‐order dependence on the concentration of iodide, while the dependence on [H+] is complex in nature. Added Cl inhibits the formation of adduct with I and thus retards the rate of inner sphere path, leading to a rate saturation at high [Cl], where only the outer sphere mechanism is active. Kinetic data indicate that simultaneous presence of two I in the vicinity of diiron core is necessary for the reduction of 1 . © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 737–743, 2005  相似文献   

12.
The title compound, hexapotassium octairon(II,III) dodecaphosphonate, exhibiting a two‐dimensional structure, is a new mixed alkali/3d metal phosphite. It crystallizes in the space group Rm, with two crystallographically independent Fe atoms occupying sites of m (Fe1) and 3m (Fe2) symmetry. The Fe2 site is fully occupied, whereas the Fe1 site presents an occupancy factor of 0.757 (3). The three independent O atoms, one of which is disordered, are situated on a mirror and all other atoms are located on special positions with 3m symmetry. Layers of formula [Fe3(HPO3)4]2− are observed in the structure, formed by linear Fe3O12 trimer units, which contain face‐sharing FeO6 octahedra interconnected by (HPO3)2− phosphite oxoanions. The partial occupancy of the Fe1 site might be described by the formation of two [Fe(HPO3)2] layers derived from the [Fe3(HPO3)4]2− layer when the Fe1 atom is absent. Fe2+ is localized at the Fe1 and Fe2 sites of the [Fe3(HPO3)4]2− sheets, whereas Fe3+ is found at the Fe2 sites of the [Fe(HPO3)2] sheets, according to bond‐valence calculations. The K+ cations are located in the interlayer spaces, between the [Fe3(HPO3)4]2− layers, and between the [Fe3(HPO3)4]2− and [Fe(HPO3)2] layers.  相似文献   

13.
In a stirred batch experiment and under aerobic conditions, ferroin (Fe(phen)32+) behaves differently from Ce(III) or Mn(II) ion as a catalyst for the Belousov‐Zhabotinsky (BZ) reaction with allylmalonic acid (AMA). The effects of bromate ion, AMA, metal‐ion catalyst, and sulfuric acid on the oscillating pattern were investigated. The kinetics of the reaction of AMA with Ce(IV), Mn(III), or Fe(phen)33+ ion was studied under aerobic or anaerobic conditions. The order of reactivity of metal ions toward reaction with AMA is Fe(phen)33+ > Mn(III) > Ce(IV) under aerobic conditions whereas it is Mn(III) > Ce(IV) > Fe(phen)33+ under anaerobic conditions. Under aerobic or anaerobic conditions, the order of reactivity of RCH(CO2H)2 (R = H (MA), Me (MeMA), Et (EtMA), allyl (AMA), n‐Bu (BuMA), Ph (PhMA), and Br (BrMA)) is PhMA > MA > BrMA > AMA > MeMA > EtMA > BuMA toward reaction with Ce(IV) ion and it is MA > PhMA > BrMA > MeMA > AMA > EtMA > BuMA toward reaction with Mn(III) ion. Under aerobic conditions, the order of reactivity of RCH(CO2H)2 toward reaction with Fe(phen)33+ ion is PhMA > BrMA > (MeMA, AMA) > (BuMA, EtMA) > MA. The experiment results are rationalized.  相似文献   

14.
《Electroanalysis》2006,18(12):1173-1178
Nano‐scale zeolite Y crystals were synthesized, and palladium nanoparticles were prepared in the supercage of the zeolite by “ship‐in‐a‐bottle” approach. A novel method to fabricate zeolite‐modified electrode (ZME) loading Pd nanoparticles was developed, in which the zeolite Y loading Pd2+ ions was self‐assembled on (3‐mercaptopropyl) trimethoxysilane‐attached Au surface to form the stable and density packed multilayers (SAM‐ZME). The structures of zeolite Y and the SAM‐ZME were investigated by using TEM, XRD and SEM techniques. Pd2+ ions in the SAM‐ZME were converted into Pd nanoparticles (Pdn0) by two steps consisting of the electrochemical reduction as well as the succeeding admission and release of CO. The redox couple [Fe(CN)6]3?/4? was used to probe the electron‐transfer barrier properties during self‐assembling process. Moreover, the special properties of the SAM‐ZME loading Pdn0 were studied by using cyclic voltammetry and CO‐probe in situ FTIR spectroscopy. The results illustrated that Pdn0 in the SAM‐ZME exhibits higher electrocatalytic activity for oxidation of adsorbed CO than that of ZME prepared in our previous study by zeolite coating method. The present study is of importance in design and preparation of SAM‐ZME, which poccesseses excellent properties for the immobilization of electrocatalysts or biomolecules.  相似文献   

15.
Solvent extraction of a mixture of PbII, MnII, FeIII, CoII, NiII and CdII in aqueous perchlorate medium by a phosphorylated hexahomotrioxacalix[3]arene (calix‐3) in dichloromethane shows a significant selectivity towards lead ions. The ligand can also be incorporated into a membrane to provide a new lead ion‐selective electrode (PbII‐ISE). A plasticized PVC membrane containing 30% PVC, 53.5% ortho‐nitrophenyloctylether (NPOE), 4.5% sodium tetraphenylborate (NaTPB) and 12% ionophore was directly coated on a graphite rod. This sensor gave a good Nernstian response of 29.7 ± 0.7 mV decade?1 over a concentration range of 1 × 10?8 – 1 × 10?4 M of lead ions, independent of pH in the range 3‐7, with a detection limit of 0.4 × 10?8 M. The dynamic response time of the electrode to achieve a steady potential was very fast and found to be less than 7 s. The selectivity relative to Ag+, NH4+, Li+, Na+, K+, Ca2+, Sr2+, Ba2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Fe3+, La3+, Sm3+, Dy3+, Er3+, Y3+ and Th4+ was examined. The electrode exhibits adequate stability with good reproducibility (with a slope of 29.6 ± 1.5 mV for 8 weeks). The characteristics of the sensor are compared with those of a tetraphosphorylated calix[4]arene (calix‐4) based PbII‐ISE, reported recently. The electrode was successfully used as an indicator electrode for a potentiometric titration of a lead solution using a standard solution of EDTA. The applicability of the sensor for lead ion measurements in various synthetic samples was also investigated.  相似文献   

16.
The use of the [FeIII(AA)(CN)4]? complex anion as metalloligand towards the preformed [CuII(valpn)LnIII]3+ or [NiII(valpn)LnIII]3+ heterometallic complex cations (AA=2,2′‐bipyridine (bipy) and 1,10‐phenathroline (phen); H2valpn=1,3‐propanediyl‐bis(2‐iminomethylene‐6‐methoxyphenol)) allowed the preparation of two families of heterotrimetallic complexes: three isostructural 1D coordination polymers of general formula {[CuII(valpn)LnIII(H2O)3(μ‐NC)2FeIII(phen)(CN)2 {(μ‐NC)FeIII(phen)(CN)3}]NO3 ? 7 H2O}n (Ln=Gd ( 1 ), Tb ( 2 ), and Dy ( 3 )) and the trinuclear complex [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3] ? NO3 ? H2O ? CH3CN ( 4 ) were obtained with the [CuII(valpn)LnIII]3+ assembling unit, whereas three isostructural heterotrimetallic 2D networks, {[NiII(valpn)LnIII(ONO2)2(H2O)(μ‐NC)3FeIII(bipy)(CN)] ? 2 H2O ? 2 CH3CN}n (Ln=Gd ( 5 ), Tb ( 6 ), and Dy ( 7 )) resulted with the related [NiII(valpn)LnIII]3+ precursor. The crystal structure of compound 4 consists of discrete heterotrimetallic complex cations, [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3]+, nitrate counterions, and non‐coordinate water and acetonitrile molecules. The heteroleptic {FeIII(bipy)(CN)4} moiety in 5 – 7 acts as a tris‐monodentate ligand towards three {NiII(valpn)LnIII} binuclear nodes leading to heterotrimetallic 2D networks. The ferromagnetic interaction through the diphenoxo bridge in the CuII?LnIII ( 1 – 3 ) and NiII?LnIII ( 5 – 7 ) units, as well as through the single cyanide bridge between the FeIII and either NiII ( 5 – 7 ) or CuII ( 4 ) account for the overall ferromagnetic behavior observed in 1 – 7 . DFT‐type calculations were performed to substantiate the magnetic interactions in 1 , 4 , and 5 . Interestingly, compound 6 exhibits slow relaxation of the magnetization with maxima of the out‐of‐phase ac signals below 4.0 K in the lack of a dc field, the values of the pre‐exponential factor (τo) and energy barrier (Ea) through the Arrhenius equation being 2.0×10?12 s and 29.1 cm?1, respectively. In the case of 7 , the ferromagnetic interactions through the double phenoxo (NiII–DyIII) and single cyanide (FeIII–NiII) pathways are masked by the depopulation of the Stark levels of the DyIII ion, this feature most likely accounting for the continuous decrease of χM T upon cooling observed for this last compound.  相似文献   

17.
The formation of a frustrated Lewis pair consisting of sodium hydride (Na+H?) and a framework‐bound hydroxy proton O(H+) is reported upon H2 treatment of zeolite NaY loaded with Pt nanoparticles (Ptx/NaY). Frustrated Lewis pair formation was confirmed using in situ neutron diffraction and spectroscopic measurements. The activity of the intrazeolite NaH as a size‐selective catalyst was verified by the efficient esterification of acetaldehyde (a small aldehyde) to form the corresponding ester ethyl acetate, whereas esterification of the larger molecule benzaldehyde was unsuccessful. The frustrated Lewis pair (consisting of Na+H? and O(H+)) generated within zeolite NaY may be a useful catalyst for various catalytic reactions which require both H? and H+ ions, such as catalytic hydrogenation or dehydrogenation of organic compounds and activation of small molecules.  相似文献   

18.
A chiral coordination compound {(Δ)[Fe(II)(phen)3][(Δ)Fe(III)(C2O4)3](NH4)(H2O)3(DMF)}n (phen = 1,10‐phenanthroline), (DMF = N,N'‐Dimethylformamide), has been synthesized, and the structure has been revealed by infrared spectroscopy and X‐ray single‐crystal diffraction. The framework consists of two chiral subunits. One subunit (Δ)[(Fe(III)(C2O4)3]3? which as host anion forms a chiral porous three‐dimensional supermolecular network with lattice water, lattice DMF and lattice ammonium cation through hydrogen bonds. And then the other is Δ[Fe(II)(phen)3]2+ which as guest cation fills in the chiral cavity located in the previously mentioned host porous network.  相似文献   

19.
《Electroanalysis》2005,17(11):1015-1018
A new pendant‐arm derivative of diaza‐18‐crown‐6, containing two oxime donor groups, has been synthesized and incorporated into a polyvinyl chloride (PVC) membrane ion‐selective electrode. The electrode shows selectivity for Ag+ ion, with a near Nernstian response. Pb2+, Cu2+, Hg2+, and Tl+ are major interfering ions, with Cd2+ having minor interference. The electrode shows no potentiometric response for the ions Mg2+, Al3+, K+, Ca2+, Ni2+, Fe3+, and La3+, and is responsive to H+ at pH<6.  相似文献   

20.
2,4,6‐Trinitrotoluene (TNT) is a widely used nitroaromatic explosive with significant detrimental effects on the environment and human health. Its detection is of great importance. In this study, both electrochemiluminescence (ECL)‐based detection of TNT through the formation of a TNT–amine complex and the detection of TNT through electrochemiluminescence resonance energy transfer (ECRET) are developed for the first time. 3‐Aminopropyltriethoxysilane (APTES)‐modified [Ru(phen)3]2+ (phen=1,10‐phenanthroline)‐doped silica nanoparticles (RuSiNPs) with uniform sizes of (73±3) nm were synthesized. TNT can interact with APTES‐modified RuSiNPs through charge transfer from electron‐rich amines in the RuSiNPs to the electron‐deficient aromatic ring of TNT to form a red TNT–amine complex. The absorption spectrum of this complex overlaps with the ECL spectrum of the APTES‐modified RuSiNPs/triethylamine system. As a result, ECL signals of the APTES‐modified RuSiNPs/triethylamine system are turned off in the presence of TNT owing to resonance energy transfer from electrochemically excited RuSiNPs to the TNT–amine complex. This ECRET method has been successfully applied for the sensitive determination of TNT with a linear range from 1×10?9 to 1×10?6 M with a fast response time within 1 min. The limit of detection is 0.3 nM . The method exhibits good selectivity towards 2,4‐dinitrotoluene, p‐nitrotoluene, nitrobenzene, phenol, p‐quinone, 8‐hydroxyquinoline, p‐phenylenediamine, K3[Fe(CN)6], Fe3+, NO3?, NO2?, Cr3+, Fe2+, Pb2+, SO32?, formaldehyde, oxalate, proline, and glycine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号