首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Langmuir and Langmuir-Blodgett monolayers of N-(4-octadecyloxy-2-hydroxybenzylidene) derivatives of glycine, tyrosine, and phenylalanine were studied using pi-A isotherms and photoelastic modulated FTIR (PEM-FTIR). Based on compression modulus and interaction parameters, mixed monolayers of these compounds with stearylamine (SAM) showed well-organized monolayers compared to mixed systems with stearic acid (SA) and stearyl alcohol (SAL). The pure amphiphiles exhibited fairly well-ordered packing in the films, and in the mixtures, the ordering increased and showed a triclinic packing arrangement. For the phenylalanine amphiphile the packing showed slight disorder compared to the other two compounds. Surface properties of the LB films of these compounds on solid substrates were analyzed using static and dynamic contact angles of a series of liquids. The surface tension of coated substrates reflected clearly the highly acidic character. Fluidlike monolayers having a molecularly rough surface indicated high wettability for n-alkanes. In contrast, the monolayer containing well-ordered, well-packed alkyl chains indicated low wettability and small hysteresis.  相似文献   

2.
The modification of electrodes with the tripeptide Gly-Gly-His for the detection of copper in water samples is described in detail. The tripeptide modified electrode was prepared by first self-assembling 3-mercaptopropionic acid (MPA) onto the gold electrode followed by covalent attachment of the tripeptide to the self-assembled monolayer using carbodiimide coupling. The electrodes were characterized using electrochemistry, a newly developed mass-spectrometry method and quantum mechanical calculations. The mass spectrometry confirmed the modification to proceed as expected with peptide bonds formed between the carboxylic acids of the MPA and the terminal amine of the peptide. Electrochemical measurements indicated that approximately half the MPA molecules in a SAM are modified with the peptide. The peptide modified electrodes exhibited high sensitivity to copper which is attributed to the stable 4N coordinate complex the peptide formed around the metal ion to give copper the preferred tetragonal coordination. The formation of a 4 coordinate complex was predicted using quantum mechanical calculation and confirmed using mass spectrometry. The adsorption of the copper to the peptide modified electrode was consistent with a Langmuir isotherm with a binding constant of (8.1 +/- 0.4) 10(10) M(-1) at 25 degrees C.  相似文献   

3.
An organo-soluble, peptide-polymer conjugate that combines poly(n-butyl acrylate) with a beta-sheet-forming peptide is spread at the water surface to investigate peptide-guided self-assembly in a two-dimensional environment. Single layers of the conjugate are studied to gain information on the packing, orientation, and structure of the conjugate molecules using standard monolayer techniques: isotherms, grazing incidence X-ray diffraction (GIXD), and infrared reflection absorption spectroscopy (IRRAS). At all conditions studied, the stabilizing beta-sheet network consists of antiparallel beta-sheets oriented parallel to the air/water interface. The incorporation of temporary switch defects in the peptide segment enables beta-sheet assembly to be triggered at different packing densities. Stable monolayers, with low compressibilities similar to peptide monolayers, form when beta-sheet assembly occurs in monolayers that contain closely packed conjugate molecules. Langmuir-Schaefer transfer of the switched monolayer seeded with 1/1000 part stearic acid results in a transferred monolayer containing ordered domains with 7 nm wide stripes, a width in agreement with the end-to-end distance of the conjugate molecule. In this interfacial system, high packing densities and a hydrophobic seed molecule play an important role in beta-sheet network and structure formation. Both effects likely direct the highly ordered beta-sheet structure because of beta-strand prealignment. Insights gained from self-assembly in this system can be applied to peptide aggregation mechanisms in more complex interfacial environments.  相似文献   

4.
Three different methods to investigate the activity of a protein kinase (casein kinase, CK2) are described. The phosphorylation of the sequence-specific peptide (1) by CK2 was monitored by electrochemical impedance spectroscopy (EIS). Phosphorylation of the peptide monolayer assembled on a Au electrode yields a negatively charged surface that electrostatically repels the negatively charged redox label [Fe(CN)6]3-/4-, thus increasing the interfacial electron-transfer resistance. The phosphorylation process by CK2 is further amplified by the association of the anti-phosphorylated peptide antibody to the monolayer. Binding of the antibody insulates the electrode surface, thus increasing the interfacial electron-transfer resistance in the presence of the redox label. This method enabled the quantitative analysis of the concentration of CK2 with a detection limit of ten units. The second method employed involved contact-angle measurements. Although the peptide 1-functionalized electrode revealed a contact angle of 67.5 degrees , phosphorylation of the peptide yielded a surface with enhanced hydrophilicity, 36.8 degrees. The biocatalyzed cleavage of the phosphate units with alkaline phosphatase regenerates the hydrophobic peptide monolayer, contact angle 55.3 degrees . The third method to characterize the CK2 system involved chemical force measurements between the phosphorylated peptide monolayer associated with the Au surface and a Au tip functionalized with the anti-phosphorylated peptide antibody. Although no significant rupture forces existed between the modified tip and the 1-functionalized surface (6+/-2 pN), significant rupture forces (multiples of 120+/-20 pN) were observed between the phosphorylated monolayer-modified surface and the antibody-functionalized tip. This rupture force is attributed to the dissociation of a simple binding event between the phosphorylated peptide and the fluorescent antibody (Fab) binding region.  相似文献   

5.
The self‐assembled (SA) molecular monolayers of a 3‐aminopropyltrimethoxysilane (3‐APTS) on a silicon (111) surface, and the effects of ultraviolet (UV) pre‐treatment for substrates on the assembling process have been studied using XPS and atomic force microscopy (AFM). The results show that the SA 3‐APTS molecules are bonded to the substrate surface in a nearly vertical orientation, with a thickness of the monolayer of about 0.8–1.5 nm. The SA molecular monolayers show a substantial degree of disorder in molecular packing, which are believed to result from the interactions of amine tails in the silane molecules used with surface functionalities of the substrates, and the oxygen‐containing species from the ambient. UV irradiation for silicon substrates prior to the self‐assembly reaction can enhance the assembly process and hence, significantly increase the coverage of the monolayer assembled for the substrates. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The peptide substrate specificity of Tie-2 was probed using the phage display method in order to identify efficient substrate for high throughput screening. Two random peptide libraries, pGWX3YX4 and pGWX4YX4, were constructed, in which all twenty amino acid residues were represented at the X positions flanking the fixed tyrosine residue Y. A fusion protein of GST and the catalytic domain of human Tie-2 was used to perform the phage phosphorylation. The phosphorylated phage particles were enriched by panning over immobilized anti-phosphotyrosine antibody pY20 for a total of 5 rounds. Four phage clones (3T61, 3T68, C1-90 and D1-15) that express a peptide sequence that can be phosphorylated by the recombinant catalytic domain of human Tie-2 were identified. Synthetic peptides made according to the sequences of the 4 selected clones from the two libraries, which had widely different sequences, were active substrates of Tie-2. Kinetic analysis revealed that D1-15 had the best catalytic efficiency with a k(cat)/K(m) of 5.9x10(4) M(-1) s(-1). Three high throughput screening assay formats, dissociation-enhanced lanthanide fluoroimmunoassay (DELFIA), radioactive plate binding (RPB) and time-resolved fluorescent resonance energy transfer (TR-FRET) were developed to assess the suitability of these phage display selected peptides in screening Tie-2 inhibitors. Three out of four peptides were functional in the DELFIA assay and D1-15 was functional in the TR-FRET assay.  相似文献   

7.
This paper describes a model system for studying the autocatalytic phosphorylation of an immobilized substrate by a kinase enzyme. This work uses self‐assembled monolayers (SAMs) of alkanethiolates on gold to present the peptide substrate on a planar surface. Treatment of the monolayer with Abl kinase results in phosphorylation of the substrate. The phosphorylated peptide then serves as a ligand for the SH2 adaptor domain of the kinase and thereby directs the kinase activity to nearby peptide substrates. This directed reaction is intramolecular and proceeds with a faster rate than does the initial, intermolecular reaction, making this an autocatalytic process. The kinetic non‐linearity gives rise to properties that have no counterpart in the corresponding homogeneous phase reaction: in one example, the rate for phosphorylation of a mixture of two peptides is faster than the sum of the rates for phosphorylation of each peptide when presented alone. This work highlights the use of an adaptor domain in modulating the activity of a kinase enzyme for an immobilized substrate and offers a new approach for studying biochemical reactions in spatially inhomogeneous settings.  相似文献   

8.
This article describes the design, synthesis, and study of alkoxyphenylethanethiol-based adsorbates with one (R1ArMT), two (R2ArMT), and three (R3ArMT) pendant octadecyloxy chains substituted at the 4-, 3,5-, and 3,4,5-positions, respectively, of the phenylethanethiol group. These adsorbates are being developed for use in the preparation of compositionally versatile "mixed" self-assembled monolayer (SAM) coatings. The resultant SAMs were characterized by ellipsometry, contact angle goniometry, polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS), and X-ray photoelectron spectroscopy (XPS). The studies revealed that R1ArMT generates a well-ordered monolayer film, while R2ArMT and R3ArMT generate monolayer films with diminished conformational order in which the degree of crystallinity decreases as follows: C18 ~ R1ArMT > R3ArMT > R2ArMT. In addition, comparison of the molecular and chain packing densities of SAMs derived from these new adsorbates reveals that the R2ArMT and R3ArMT adsorbates give rise to SAMs with reduced chain tilt and smaller surface area per chain when compared to the SAMs derived from C18 and R1ArMT.  相似文献   

9.
Self-assembled monolayers of alpha-helical peptides were prepared on gold, and the effects of the monolayer structures (kind of constituent amino acid, molecular orientation, and molecular packing) on long-range electron transfer through the helical peptides were studied. The helical peptides were 16mer peptides having a thiophenyl linker at the N-terminal for immobilization on gold and a redox active ferrocene moiety at the C-terminal as an electron-transfer probe. The peptides were immobilized on gold by a gold-sulfur linkage and the electron transfer from the ferrocene moiety to gold was studied by electrochemical methods. When two types of the peptides, one with the repeating unit of Leu-Aib (Aib represents 2-aminoisobutyric acid) and the other with that of Ala-Aib, were compared, the electron transfer was found one order slower in the Leu-Aib peptide monolayer than that in the Ala-Aib peptide monolayer. The self-assembled monolayers of the Ala-Aib peptide with mixing of three different lengths of the peptides, 8mer, 12mer, and 16mer without a ferrocene moiety, were also prepared. The monolayer regularity in terms of molecular orientation and packing was higher roughly in the order of the monolayers mixed with 16mer > 12mer > no additive > 8mer, but the electron transfer became faster in the opposite order. The logarithms of the standard rate constants showed a nearly linear relationship with the direct distances between the ferrocene moiety and gold (beta = 0.32 A (-1)). Some data deviated from this linear relationship, but the deviations could be explained from the difference in the molecular packing, which was evaluated from the monolayer capacitance. It is thus concluded that an electron is transferred along a few molecules along the surface normal so that the vertical orientation or the increase of the interchain backbone separation slows down the electron transfer. Further, it is demonstrated that a tightly packed monolayer, where vibrational mode is restricted, suppresses the electron transfer. Three models are proposed to account for the observed molecular dynamics effects on the basis of either electron-transfer mechanism of electron tunneling or sequential hopping.  相似文献   

10.
Pure and mixed monolayers of a synthetic peptide, GPR-i3n, derived from the third intracellular loop of the alpha2 adrenergic receptor and a shorter inactive oligopeptide, N-formyl-(Gly)3-(Cys) (called 3GC), were prepared on gold surfaces. The mixing ratio of the GPR-i3n and 3GC was used to control G-protein binding capability. The GPR-i3n peptide is specially designed for bovine G-protein selectivity and has been proven to have high affinity to G-proteins [Vahlberg, C.; Petoral, R. M., Jr.; Lindell, C.; Broo, K.; Uvdal, K. Langmuir 2006, 22 (17), 7260-7264]. Pure 3GC monolayers show very low protein adsorption capability. In this study, 3GC is chosen as a coadsorbent, with the aim to induce molecular conformational changes during monolayer formation to enhance G-protein adsorption. A full characterization of the mixed monolayers was done. The monolayer thickness and the mass-related surface coverage for both GPR-i3n and 3GC were investigated using radio labeling. The GPR-i3n was labeled by 125I-targeting tyrosine, and the activity was measured by using radioimmunoassay (RIA). The formation and chemical composition of GPR-i3n and 3GC monolayers were investigated using X-ray photoelectron spectroscopy, and it is shown that both GPR-i3n and 3GC bind chemically to the gold surface. The interaction between the mixed monolayers and G-proteins was investigated by means of real-time surface plasmon resonance. There is a higher protein binding capacity to the monolayer when the GPR-i3n peptide is intermixed with the 3GC coadsorbent, despite the fact that the 3GC itself has a very low G-protein binding capability. This supports a molecular reorientation at the surface, while 3GC is intermixed with GPR-i3n.  相似文献   

11.
The synthesis, spectroscopic characterization and surface-enhanced spectroscopy of a new electro active organic material bis (benzimidazo) thioperylene (Monothio BZP) are reported. Langmuir monolayers of Monothio BZP were successfully formed on water subphase and characterized by the pi-A surface-pressure area isotherm. Langmuir-Blodgett (LB) monomolecular layers of Monothio BZP were fabricated onto glass substrates and onto silver island films for surface-enhanced spectroscopic studies. The results of surface-enhanced resonance Raman scattering (SERRS), SERRS imaging and surface-enhanced fluorescence (SEF) studies for Monothio BZP LB monolayers are reported. Raman imaging (global imaging and point-by-point mapping) of the SERRS signal for a single monomolecular layer on silver islands were obtained using the 514.5 nm laser line. The SERRS imaging permits a visualization of the variation of the SERRS intensity across of the rough metal surface. The SEF was recorded for the excimer emission of aggregates in the LB film. The distance dependence and the enhancement factor of SEF were determined using fatty acid spacing layers. A temperature dependence study of the LB monolayer SERRS and SEF spectra was carried out between -190 degrees and + 200 degrees C confirming the thermal stability of the LB monolayer on silver. The specificity and the sensitivity of SERRS signal on metal island films was probed using mixed LB films with 0.01% molecular ratio of Monothio BZP in Arachidic Acid (AA). The micro-Raman SERRS spectra from ca. 10(-3) attomole of the dye were recorded.  相似文献   

12.
Putative global energy minima of clusters formed by the adsorption of rare gases on a C(60) fullerene molecule, C(60)X(N) (X=Ne, Ar, Kr, Xe; N ≤ 70), are found using basin-hopping global optimization in an empirical potential energy surface. The association energies per rare gas atom as a function of N present two noticeable minima for Ne and Ar and just one for Kr and Xe. The minimum with the smallest N is the deepest one and corresponds to an optimal packing monolayer structure; the other one gives a monolayer with maximum packing. For Kr and Xe, optimal and maximum packing structures coincide. By using an isotropic average form of the X-C(60) interaction, we have established the relevance of the C(60) surface corrugation on the cluster structures. Quantum effects are relevant for Ne clusters. The adsorption of these rare gases on C(60) follows patterns that differ significantly from the ones found recently for He by means of experimental and theoretical methods.  相似文献   

13.
The aggregation of soluble, nontoxic amyloid beta (Abeta) peptide to beta-sheet containing fibrils is assumed to be a major step in the development of Alzheimer's disease. Interactions of Abeta with neuronal membranes could play a key role in the pathogenesis of the disease. Herein, we study the adsorption of synthetic Abeta peptide to DPPE and DMPE monolayers (dipalmitoyl- and dimyristoylphosphatidylethanolamine). Both lipids exhibit a condensed monolayer state at 20 degrees C and form a similar lattice. However, at low packing densities (at large area per molecule), the length of the acyl chains determines the phase behavior, therefore DPPE is fully condensed whereas DMPE exhibits a liquid-expanded state with a phase transition at approximately 5-6 mNm(-1). Adsorption of Abeta to DPPE and DMPE monolayers at low surface pressure leads to an increase of the surface pressure to approximately 17 mNm(-1). The same was observed during adsorption of the peptide to a pure air-water interface. Grazing incidence X-ray diffraction (GIXD) experiments show no influence of Abeta on the lipid structure. The adsorption kinetics of Abeta to a DMPE monolayer followed by IRRAS (infrared reflection absorption spectroscopy) reveals the phase transition of DMPE molecules from liquid-expanded to condensed states at the same surface pressure as for DMPE on pure water. These facts indicate no specific interactions of the peptide with either lipid. In addition, no adsorption or penetration of the peptide into the lipid monolayers was observed at surface pressures above 30 mNm(-1). IRRAS allows the measurement of the conformation and orientation of the peptide adsorbed to the air-water interface and to a lipid monolayer. In both cases, with lipids at surface pressures below 20 mNm(-1) and at the air-water interface, adsorbed Abeta has a beta-sheet conformation and these beta-sheets are oriented parallel to the interface.  相似文献   

14.
We have prepared a chemically anchored monolayer of PEG (poly(ethylene glycol)) and phospholipid mixture (PEG/phospholipid) on a methacryloyl-terminated substrate by in situ photopolymerization. Both monoacryloyl phospholipid (acryloyl-PC, 1-palmitoyl-2-[12-(acryloyloxy)dodecanoyl]-sn-glycero-3-phosphocholine) and monoacryloyl PEG (acryloyl-PEG, 12-(acryloyloxy)dodecanoyl-PEG) were synthesized by modifyingphospholipid and PEGwith 12-(acryloyloxy)-1-dodecanoic acid and 12-(acryloyloxy)-1-dodecanol, respectively. The surface pressure-area (pi-A) isotherm showed that acryloyl-PEG molecules were stable in the phospholipid monolayer and that they could be evenly inserted into a phospholipid monolayer at the air/water interface. By adding 10 mol % acryloyl-PEG into phosholipid vesicles, we could produce a PEG/phosholipid monolayer on methacryloyl-terminated substrates using vesicle fusion for 3 h. Then, this polymerizable PEG/phospholipid monolayer was in situ photopolymerized onto a methacryloyl-terminated substrate with eosin Y/triethanolamine as co-initiators. Optimal vesicle fusion and irradiation condition were determined with respect to the vesicle fusion time and duration of irradiation. As confirmed by atomic force microscopy and X-ray reflectivity studies, the polymerized PEG/phosholipid surface formed a PEG-covered phospholipid monolayer with thicknesses of 3 and 6 nm for the base phospholipid monolayer and the covering PEG layer, respectively. The chemical anchoring efficiency ofpolymerized PEG and phospholipid molecules, which was calculated by the relative carbon ratio of each surface before and after methanol washing using X-ray photoelectron spectroscopy, was 98%. This polymerized PEG/phosholipid monolayer showed good stability in organic solution due to firm chemical anchoring to a solid surface.  相似文献   

15.
We report studies on the modifications induced by the evaporation of copper overlayers on a self-assembled monolayer (SAM) of the oligo(phenylene-ethynyl) dithiol, 1-thio-4-[4'-[(4'-thio)phenylethynyl]-1'-ethynyl]-benzene (TTPEB). These SAMs were characterized after deposition from a tetrahydrofuran solution on polycrystalline gold substrates and after copper evaporation and its subsequent removal by nitric acid. Monolayers were studied via cyclic voltammetry (CV), UV-vis multiwavelength ellipsometry, external reflectance infrared (IR) spectroscopy, and ion scattering spectroscopy (ISS). The results obtained indicate that TTPEB SAMs display the same packing characteristics before and after copper evaporation and removal. However, as shown by IR spectroscopy, the monolayers undergo a reorganization process that involves an increase in tilt angle accompanied by rotation of aromatic rings that results in a decrease in the average molecular twist angle. ISS data suggest that copper diffuses through the monolayer after copper evaporation, a result that is significant for applications of this molecule in molecular electronic devices.  相似文献   

16.
Crown conformers of O-carboxymethylated calix[4]resorcinarenes (CRA-CMs) bearing four perfluorooctyl- and octylazobenzene residues at the lower rim of the cyclic skeleton were synthesized to investigate the resistance to desorption of CRA-CMs forming self-assembled monolayers on aminosilylated silica substrates and the surface energy photocontrol based on E- to-Z photoisomerization of the azobenzene moiety. In comparison with CRA-CM monolayers on silica substrates, the desorption of CRA-CMs on the aminated substrate was remarkably suppressed even when CRA-CM monolayers were sonicated in polar solvents and even in water. The high desorption-resistance was attributable to multi-point adsorption of CRA-CMs through COOH/NH2 interactions. UV-Vis spectral studies revealed that CRA-CM substituted with p-octylazobenzene exhibited high E- to-Z photoisomerizability up to 92% in self-assembled monolayers, while less photoisomerizability was observed for CRA-CM bearing p-perfluorooctylazobenzenes due to the steric hindrance of the larger perfluoroalkyl chains. Photoinduced changes of contact angles for water up to 8.3° were observed for a CRA-CM monolayer.  相似文献   

17.
The role kinases play in regulating cellular processes makes them potential biomarkers for detecting the onset and prognosis of various diseases, including many types of cancer. Current kinase biosensors, including electrochemical and radiometric methods, rely on sensing the ATP-dependant enzymatic phosphorylation reaction. Here we introduce a new type of interaction-based electrochemical kinase biosensor that does not require any chemical labelling or modification. The basis for sensing is the interactions between the catalytic site of the kinase and the phosphorylation site of its substrate rather than the phosphorylation reaction. We demonstrated this concept with the ERK2 kinase and its substrate protein HDGF, which is involved in lung cancer. A peptide monolayer derived from the HDGF phosphorylation site was adsorbed onto a gold electrode and was used to sense ERK2 without ATP. The sensitivity of the assay was down to 10 nM of ERK2, corresponding with the range of its cellular concentrations. Surface chemistry analysis confirmed that ERK2 was bound to the HDGF peptide monolayer. This increased the permeability of redox-active species through the monolayer and resulted in ERK2 electrochemical sensing. Since our detection approach is based on protein-protein interactions and not on the enzymatic reaction, it can be further utilized for more selective detection of different types of enzymes.  相似文献   

18.
A twin-tailed, twin-chiral fatty acid, (2R,3R)-(+)-bis(decyloxy)succinic acid was synthesized and its two dimensional behavior at the air-water interface was examined. The pH of the subphase had a profound effect on the monolayer formation. On acidic subphase, stable monolayers with increased area per molecule due to hydrogen bonding and bilayers at collapse pressures were observed. Highly compressible films were formed at 40 degrees C, while stable monolayers with increased area were observed at sub-room temperatures. Langmuir monolayers formed on subphases containing 1 mM ZnCl2 and CaCl2 revealed two dimensional metal complex formation with Zn2+ forming a chelate-type complex, while Ca2+ formed an ionic-type complex. Monolayers transferred from the condensed phase onto hydrophilic Si(100) and quartz substrates revealed the formation of bilayers through transfer-induced monolayer buckling. Compression induced crystallites in 2D from monolayers and vesicle-like supramolecular structures from multilayers were the noted LB film characteristics, adopting optical imaging and electron microscopy. The interfacial monolayer structure studied through molecular dynamics simulation revealed the order and packing at a molecular level; monolayers adsorbed at various simulated specific areas of the molecule corroborated the (pi-A) isotherm and the formation of a hexagonal lattice at the air-water interface.  相似文献   

19.
Cholesterol oxidase has been covalently immobilized onto 11-amino-1-undecanethiol hydrochloride (AUT) self-assembled monolayer (SAM) fabricated on gold (Au) substrates using glutaraldehyde as a cross-linker. These ChOx/AUT/Au bioelectrodes characterized using contact angle (CA) measurements; electrochemical technique and atomic force microscopy (AFM) have been utilized for the estimation of cholesterol in solution using the surface plasmon resonance (SPR) technique. These biosensing electrodes exhibiting linearity from 50 to 500 mg/dL of cholesterol in solution and sensitivity of 1.23 m0/(mg dL), can be used more than 20 times and have a shelf life of about 10 weeks when stored at 4 degrees C.  相似文献   

20.
Folded proteins can be translocated across biological membranes via the Tat machinery. It has been shown in vitro that these Tat substrates can interact with membranes prior to translocation. Here we report a monolayer and infrared reflection-absorption spectroscopic (IRRAS) study of the initial states of this membrane interaction, the binding to a lipid monolayer at the air/water interface serving as a model for half of a biological membrane. Using the model Tat substrate HiPIP (high potential iron-sulfur protein) from Allochromatium vinosum, we found that the precursor preferentially interacts with monolayers of negatively charged phospholipids. The signal peptide is essential for the interaction of the precursor protein with the monolayer because the mature HiPIP protein showed no interaction with the lipid monolayer. However, the individual signal peptide interacted differently with the monolayer compared to the complete precursor protein. IRRA spectroscopy indicated that the individual signal peptide forms mainly aggregated β-sheet structures. This β-sheet formation did not occur for the signal peptide when being part of the full length precursor. In this case it adopted an α-helical structure upon membrane insertion. The importance of the signal peptide and the mature domain for the membrane interaction is discussed in terms of current ideas of Tat substrate-membrane interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号