首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 4-D ab initio potential energy surface is calculated for the intermolecular interaction of hydrogen and carbon dioxide, using the CCSD(T) method with a large basis set. The surface has a global minimum with a well depth of 212 cm(-1) and an intermolecular distance of 2.98 A for a planar configuration with both the O-C-O and H-H axes perpendicular to the intermolecular axis. Bound state calculations are performed for the H(2)-CO(2) van der Waals complex with H(2) in both the para and ortho spin states, and the binding energy of paraH(2)-CO(2)(50.4 cm(-1)) is found to be significantly less than that of orthoH(2)-CO(2)(71.7 cm(-1)). The surface supports 7 bound intermolecular vibrational states for paraH(2)-CO(2) and 19 for orthoH(2)-CO(2), and the lower rotational levels with J< or = 4 follow an asymmetric rotor pattern. The calculated infrared spectrum of paraH(2)-CO(2) agrees well with experiment. For orthoH(2)-CO(2), the ground state rotational levels allowed by symmetry are found to have (K(a), K(c))=(even, odd) or (odd, even). This somewhat unexpected fact enables the previously observed experimental spectrum to be assigned for the first time, in good agreement with theory, and indicates that the orientation of hydrogen is perpendicular to the intermolecular axis in the ground state of the orthoH(2)-CO(2) complex.  相似文献   

2.
The infrared spectrum of the Al(+)-H(2) complex is recorded in the H-H stretch region (4075-4110 cm(-1)) by monitoring Al(+) photofragments. The H-H stretch band is centered at 4095.2 cm(-1), a shift of -66.0 cm(-1) from the Q(1)(0) transition of the free H(2) molecule. Altogether, 47 rovibrational transitions belonging to the parallel K(a)=0-0 and 1-1 subbands were identified and fitted using a Watson A-reduced Hamiltonian, yielding effective spectroscopic constants. The results suggest that Al(+)-H(2) has a T-shaped equilibrium configuration with the Al(+) ion attached to a slightly perturbed H(2) molecule, but that large-amplitude intermolecular vibrational motions significantly influence the rotational constants derived from an asymmetric rotor analysis. The vibrationally averaged intermolecular separation in the ground vibrational state is estimated as 3.03 A, decreasing by 0.03 A when the H(2) subunit is vibrationally excited. A three-dimensional potential energy surface for Al(+)-H(2) is calculated ab initio using the coupled cluster CCSD(T) method and employed for variational calculations of the rovibrational energy levels and wave functions. Effective dissociation energies for Al(+)-H(2)(para) and Al(+)-H(2)(ortho) are predicted, respectively, to be 469.4 and 506.4 cm(-1), in good agreement with previous measurements. The calculations reproduce the experimental H-H stretch frequency to within 3.75 cm(-1), and the calculated B and C rotational constants to within approximately 2%. Agreement between experiment and theory supports both the accuracy of the ab initio potential energy surface and the interpretation of the measured spectrum.  相似文献   

3.
We report a three-dimensional ab initio potential-energy surface for the H2-Kr complex calculated using a supermolecular method. The electronic calculations were performed at the coupled-cluster singles and doubles level with noniterative inclusion of connected triples levels with a large basis set including midbond functions and the full counterpoise correction for the basis-set superposition error. The intermolecular potential energy between the H2 molecule and the Kr atom were evaluated at five potential-optimized discrete variable representation (DVR) grid points generated from the potential-energy curve of H2. The potential for other bond lengths of H2 could be deduced using polynomial interpolations. The complex is found to have a linear preferred structure with a rather flat energy barrier. The three-dimensional DVR method and the Lanczos propagation algorithm were employed to calculate the rovibrational states without separating the inter- and intramolecular nuclear motions. In addition, the rovibrational spectra from the H2 fundamental vibrational band were calculated. The calculated shift for the band origin is -1.50 cm-1, which is in good agreement with the experimental value of -1.706 cm-1, and the calculated transition frequencies in Q1(0) and S1(0) bands are within 3% of the observed values.  相似文献   

4.
A three-dimensional potential energy surface is developed to describe the structure and dynamical behavior of the Mg(+)-H(2) and Mg(+)-D(2) complexes. Ab initio points calculated using the RCCSD(T) method and aug-cc-pVQZ basis set (augmented by bond functions) are fitted using a reproducing kernel Hilbert space method [Ho and Rabitz, J. Chem. Phys. 104, 2584 (1996)] to generate an analytical representation of the potential energy surface. The calculations confirm that Mg(+)-H(2) and Mg(+)-D(2) essentially consist of a Mg(+) atomic cation attached, respectively, to a moderately perturbed H(2) or D(2) molecule in a T-shaped configuration with an intermolecular separation of 2.62 A? and a well depth of D(e) = 842 cm(-1). The barrier for internal rotation through the linear configuration is 689 cm(-1). Interaction with the Mg(+) ion is predicted to increase the H(2) molecule's bond-length by 0.008 A?. Variational rovibrational energy level calculations using the new potential energy surface predict a dissociation energy of 614 cm(-1) for Mg(+)-H(2) and 716 cm(-1) for Mg(+)-D(2). The H-H and D-D stretch band centers are predicted to occur at 4059.4 and 2929.2 cm(-1), respectively, overestimating measured values by 3.9 and 2.6 cm(-1). For Mg(+)-H(2) and Mg(+)-D(2), the experimental B and C rotational constants exceed the calculated values by ~1.3%, suggesting that the calculated potential energy surface slightly overestimates the intermolecular separation. An ab initio dipole moment function is used to simulate the infrared spectra of both complexes.  相似文献   

5.
All the pure rotational transitions reported in the previous studies [J. Chem. Phys. 113, 10121 (2000); J. Mol. Spectrosc. 222, 22 (2003)] and newly observed rotation-vibration transitions, P = 1/2 <-- 3/2, for Ar-SH and Ar-SD [J. Chem. Phys. (2005), the preceding paper] have been simultaneously analyzed to determine a new intermolecular potential-energy surface of Ar-SH in the ground state. A Schrodinger equation considering the three-dimensional freedom of motion for an atom-diatom complex in the Jacobi coordinate, R, theta, and r, was numerically solved to obtain energies of the rovibrational levels using the discrete variable representation method. A three-dimensional potential-energy surface is determined by a least-squares fitting with initial values of the parameters for the potential obtained by ab initio calculations at the RCCSD(T)/aug-cc-pVTZ level of theory. The potential well reproduces all the observed data in the microwave and millimeter wave regions with parity doublings and hyperfine splittings. Several low-lying rovibrational energies are calculated using the new potential-energy surface. The dependence of the interaction energy between Ar and SH(2pi(i)) on the bond length of the SH monomer is discussed.  相似文献   

6.
The high accuracy ab initio adiabatic potential energy surfaces (PESs) of the ground electronic state of the water molecule, determined originally by Polyansky et al. [Science 299, 539 (2003)] and called CVRQD, are extended and carefully characterized and analyzed. The CVRQD potential energy surfaces are obtained from extrapolation to the complete basis set of nearly full configuration interaction valence-only electronic structure computations, augmented by core, relativistic, quantum electrodynamics, and diagonal Born-Oppenheimer corrections. We also report ab initio calculations of several quantities characterizing the CVRQD PESs, including equilibrium and vibrationally averaged (0 K) structures, harmonic and anharmonic force fields, harmonic vibrational frequencies, vibrational fundamentals, and zero-point energies. They can be considered as the best ab initio estimates of these quantities available today. Results of first-principles computations on the rovibrational energy levels of several isotopologues of the water molecule are also presented, based on the CVRQD PESs and the use of variational nuclear motion calculations employing an exact kinetic energy operator given in orthogonal internal coordinates. The variational nuclear motion calculations also include a simplified treatment of nonadiabatic effects. This sophisticated procedure to compute rovibrational energy levels reproduces all the known rovibrational levels of the water isotopologues considered, H(2) (16)O, H(2) (17)O, H(2) (18)O, and D(2) (16)O, to better than 1 cm(-1) on average. Finally, prospects for further improvement of the ground-state adiabatic ab initio PESs of water are discussed.  相似文献   

7.
The B1A1 electronic state of silylene (SiH2) is the second excited singlet state of the molecule and, like the analogous c state of methylene (CH2), it is quasilinear with symmetry 1sigmag+ at linearity. This state dissociates to Si(1D) + H2(1sigmag+). At equilibrium, the B state of SiH2 has an energy that we calculate to be 0.71 eV above that of the dissociation products. However, there is a barrier to dissociation that allows quasibound rovibrational levels to occur, and some have been observed recently [Y. Muramoto et al., J. Chem. Phys. 122, 154302 (2005)]. Starting with our analytical ab initio potential-energy surface, we adjusted it in a fitting to the experimental term values in order to determine the optimum potential-energy function in the bound region. This potential has a C2v equilibrium structure with a SiH bond length of 1.459 angstroms and a bond angle of 165.4 degrees; the barrier to linearity is only 129 cm(-1). Using the optimized potential-energy surface we calculate B-state term values, and using our calculated y and z dipole moment surfaces, we simulate the rotation-vibration spectrum of the state in order to assist in the detection of the matrix isolation spectrum.  相似文献   

8.
The authors present a new five-dimensional potential energy surface for H2-CO2 including the Q3 normal mode for the nu3 antisymmetric stretching vibration of the CO2 molecule. The potential energies were calculated using the supermolecular approach with the full counterpoise correction at the CCSD(T) level with an aug-cc-pVTZ basis set supplemented with bond functions. The global minimum is at two equivalent T-shaped coplanar configurations with a well depth of 219.68 cm-1. The rovibrational energy levels for four species of H2-CO2 (paraH2-, orthoH2-, paraD2-, and orthoD2-CO2) were calculated employing the discrete variable representation (DVR) for radial variables and finite basis representation (FBR) for angular variables and the Lanczos algorithm. Our calculations showed that the off-diagonal intra- and intermolecular vibrational coupling could be neglected, and separation of the intramolecular vibration by averaging the total Hamiltonian with the wave function of a specific vibrational state of CO2 should be a good approximation with high accuracy. The calculated band origin shift in the infrared spectra in the nu3 region of CO2 is -0.113 cm-1 for paraH2-CO2 and -0.099 cm-1 for orthoH2-CO2, which agrees well with the observed values of -0.198 and -0.096 cm-1. The calculated rovibrational spectra for H2-CO2 are consistent with the available experimental spectra. For D2-CO2, it is predicted that only a-type transitions occur for paraD2-CO2, while both a-type and b-type transitions are significant for orthoD2-CO2.  相似文献   

9.
We evaluate the phenylacetylene-argon intermolecular potential energy surface by fitting a representative number of ab initio interaction energies to an analytic function. These energies are calculated at a grid of intermolecular geometries, using the CCSD(T) method and the aug-cc-pVDZ basis set extended with a series of 3s3p2d1f1g midbond functions. The potential is characterized by two equivalent global minima where the Ar atom is located above and below the phenylacetylene plane at a distance of 3.5781 A? from the molecular center of mass and at an angle of 9.08° with respect to the axis perpendicular to the phenylacetylene plane and containing the center of mass. The calculated interaction energy is -418.9 cm(-1). To check further the potential, we obtain the rovibrational spectrum of the complex and the results are compared to the available experimental data.  相似文献   

10.
The Li+-(H2)n n=1-3 complexes are investigated through infrared spectra recorded in the H-H stretch region (3980-4120 cm-1) and through ab initio calculations at the MP2/aug-cc-pVQZ level. The rotationally resolved H-H stretch band of Li+-H2 is centered at 4053.4 cm-1 [a -108 cm-1 shift from the Q1(0) transition of H2]. The spectrum exhibits rotational substructure consistent with the complex possessing a T-shaped equilibrium geometry, with the Li+ ion attached to a slightly perturbed H2 molecule. Around 100 rovibrational transitions belonging to parallel Ka=0-0, 1-1, 2-2, and 3-3 subbands are observed. The Ka=0-0 and 1-1 transitions are fitted by a Watson A-reduced Hamiltonian yielding effective molecular parameters. The vibrationally averaged intermolecular separation in the ground vibrational state is estimated as 2.056 A increasing by 0.004 A when the H2 subunit is vibrationally excited. The spectroscopic data are compared to results from rovibrational calculations using recent three dimensional Li+-H2 potential energy surfaces [Martinazzo et al., J. Chem. Phys. 119, 11241 (2003); Kraemer and Spirko, Chem. Phys. 330, 190 (2006)]. The H-H stretch band of Li+-(H2)2, which is centered at 4055.5 cm-1 also exhibits resolved rovibrational structure. The spectroscopic data along with ab initio calculations support a H2-Li+-H2 geometry, in which the two H2 molecules are disposed on opposite sides of the central Li+ ion. The two equivalent Li+...H2 bonds have approximately the same length as the intermolecular bond in Li+-H2. The Li+-(H2)3 cluster is predicted to possess a trigonal structure in which a central Li+ ion is surrounded by three equivalent H2 molecules. Its infrared spectrum features a broad unresolved band centered at 4060 cm-1.  相似文献   

11.
Several features and the performance of the recently published [P. Jankowski and M. Ziolkowski, Mol. Phys. 104, 2293 (2006)] three-dimensional intermolecular potential energy surface for the Ar-HF complex have been investigated. This full-dimensional surface has been obtained using the method of the local expansion of the exact interaction energy surface [P. Jankowski, J. Chem. Phys. 121, 1655 (2004)] in the Taylor series with respect to intramolecular coordinates. The interaction energies have been calculated with the coupled-cluster supermolecular method with single, double, and noniterative triple excitations. The convergence of the interaction energy with respect to the size of the basis set is discussed. The two-dimensional surfaces resulting from averaging of the full-dimensional surface over the intramolecular vibration of HF have been obtained and directly compared to the empirical H6(4,3,2) set of surfaces proposed by Hutson [J. Chem. Phys. 96, 6752 (1992)]. A very good agreement has been observed. The averaged potentials have been used to calculate the rovibrational energy levels of the Ar-HF and Ar-DF complexes and compared to the experimental data. The accuracy of rovibrational calculations achieved with the new surface is much better than with any of the ab initio surfaces available so far. Predictions of the rovibrational energy levels and spectroscopic constants have also been done for Ar-HF with HF in the v=4,5 vibrational states, and for Ar-DF and DF in the v=3,4 states. The full-dimensional surface studied in this paper is the first ab initio surface which is fully compatible with the empirical H6(4,3,2) surface proposed by Hutson.  相似文献   

12.
The millimeter wave spectrum of the isotopically substituted CO dimer, (12C18O)2, was studied with the Orotron jet spectrometer, confirming and extending a previous infrared study [A. R. W. McKellar, J. Mol. Spectrosc. 226, 190 (2004)]. A very dilute gas mixture of CO in Ne was used, which resulted in small consumption of 12C18O sample gas and produced cold and simple spectra. Using the technique of combination differences together with the data from the infrared work, six transitions in the 84-127 GHz region have been assigned. They belong to two branches, which connect four low levels of A+ symmetry to three previously unknown levels of A- symmetry. The discovery of the lowest state of A- symmetry, which corresponds to the projection K=0 of the total angular momentum J onto the intermolecular axis, identifies the geared bending mode of the 12C18O dimer at 3.607 cm(-1). Accompanying rovibrational calculations using a recently developed hybrid potential from ab initio coupled cluster [CCSD(T)] and symmetry-adapted perturbation theory calculations [G. W. M. Vissers et al., J. Chem. Phys. 122, 054306 (2005)] gave very good agreement with experiment. The isotopic dependence of the A+/A- energy splitting, the intermolecular separation R, and the energy difference of two ground state isomers, which change significantly when 18O or 13C are substituted into the normal (12C16O)2 isotopolog [L. A. Surin et al., J. Mol. Spectrosc. 223, 132 (2004)], was explained by these calculations. It turns out that the change in anisotropy of the intermolecular potential with respect to the shifted monomer centers of mass is particularly significant.  相似文献   

13.
Binary complexes of C2 with rare-gas atoms (C2-Rg) have attracted theoretical interest as their potential-energy surfaces are predicted to support linear equilibrium geometries, without the local minimum for the T-shaped geometry that would be expected using a standard pair-potential model. In the present work we have explored the properties of C2-Ne using laser-induced fluorescence detection of the D 1Sigmau +-X 1Sigmag + transition. Bands of the complex were observed in association with the monomer 0-0 and 1-1 transitions. Rotationally resolved data yielded rotational constants of B'=0.099(3) cm(-1) and B"=0.100(3) cm(-1) for the excited and ground states, respectively. Analysis of the rovibrational energy-level structure for C2(D)-Ne indicates that the complex has a linear equilibrium structure with a barrier to internal rotation of approximately 15 cm(-1). Data for the ground state validate a recent high-level ab initio calculation of the potential-energy surface for C2(X)-Ne.  相似文献   

14.
CHCl(3)-SO(2) association is studied by high-level quantum-chemical calculations of stationary points of the dimer electronic potential-energy hypersurface, including correlated second-order Moller-Plesset and CCSD(T) calculations with basis sets up to 6-311++G(d,p). During geometry optimization, frequency, and energy calculations, a self-written computer code embedding the GAMESS ab initio program suite applies counterpoise correction of the basis set superposition error. A CH...O hydrogen-bonded complex (DeltaE(0)=-8.73 kJmol) with a 2.4 A intermolecular H...O distance and two very weak van der Waals complexes (DeltaE(0)=-3.78 and -2.94 kJmol) are located on the counterpoise-corrected potential-energy surface. The intermolecular interactions are characterized by Kitaura-Morokuma interaction energy decompositions and Mulliken electron population analyses. The unusual hydrogen bond is distinguished by a CH-bond contraction, a pronounced enhancement of the IR intensity and a shift to higher frequency ("blueshift") of the CH-stretching vibration compared to the CHCl(3) monomer. Spectroscopy and association in liquid solution is also discussed; our results provide an alternative explanation for features in the CH-stretching vibration spectrum of chloroform dissolved in liquid sulfur dioxide which have been attributed previously to an intermolecular Fermi resonance.  相似文献   

15.
We report a new three-dimensional ab initio intermolecular potential energy surface for the Ne-H(2)S complex with H(2)S monomer fixed at its experimental average structure. Using the supermolecular approach, the intermolecular potential energies were evaluated at CCSD(T) (coupled cluster with single and double and perturbative triple excitations) level with large basis sets including bond functions. The full counterpoise procedure was employed to correct the basis set superposition error. The planar T-shaped global minimum is located at the intermolecular distance of 3.51 ? with a well depth of 71.57 cm(-1). An additional planar local minimum was found to be separated from the global minimum with an energy barrier of 23.11 cm(-1). In addition, two first-order and one second-order saddle points were also located. The combined radial discrete variable representation/angular finite basis representation method and the Lanczos algorithm were employed to evaluate the rovibrational energy levels for eight isotopic species of the Ne-H(2)S complexes. The rotational transition frequencies for the eight isotopomers were also determined for the ground and first vibrational excited states, which are all in very good agreement with the available experimental values.  相似文献   

16.
Intermolecular interaction energies of 12 orientations of C(3)F(8) dimers were calculated with electron correlation correction by the second-order M?ller-Plesset perturbation method. The antiparallel C(2h) dimer has the largest interaction energy (-1.45 kcal/mol). Electron correlation correction increases the attraction considerably. Electrostatic energy is not large. Dispersion is mainly responsible for the attraction. Orientation dependence of the interaction energy of the C(3)F(8) dimer is substantially smaller than that of the C(3)H(8) dimer. The calculated interaction energy of the C(3)F(8) dimer at the potential minimum is 78% of that of the C(3)H(8) dimer (-1.85 kcal/mol), whereas the interaction energies of the CF(4) and C(2)F(6) dimers are larger than those of the CH(4) and C(2)H(6) dimers. The intermolecular separation in the C(3)F(8) dimer at the potential minimum is substantially larger than that in the C(3)H(8) dimer. The larger intermolecular separation due to the steric repulsion between fluorine atoms is the cause of the smaller interaction energy of the C(3)F(8) dimer at the potential minimum. The calculated intermolecular interaction energy potentials of the C(3)F(8) dimers using an all atom model OPLS-AA (OPLS all atom model) force field and a united atom model force field were compared with the ab initio calculations. Although the two force fields well reproduces the experimental vapor and liquid properties of perfluoroalkenes, the comparison shows that the united atom model underestimates the potential depth and orientation dependence of the interaction energy. The potentials obtained by the OPLS-AA force field are close to those obtained by the ab initio calculations.  相似文献   

17.
The formalism based on the total energy bifunctional (E[rhoI,rhoII]) is used to derive interaction energies for several hydrogen-bonded complexes (water dimer, HCN-HF, H2CO-H2O, and MeOH-H2O). Benchmark ab initio data taken from the literature were used as a reference in the assessment of the performance of gradient-free [local density approximation (LDA)] and gradient-dependent [generalized gradient approximation (GGA)] approximations to the exchange-correlation and nonadditive kinetic-energy components of E[rhoI,rhoII]. On average, LDA performs better than GGA. The average absolute error of calculated LDA interaction energies amounts to 1.0 kJ/mol. For H2CO-H2O and H2O-H2O complexes, the potential-energy curves corresponding to the stretching of the intermolecular distance are also calculated. The positions of the minima are in a good agreement (less than 0.2 A) with the reference ab initio data. Both variational and nonvariational calculations are performed to assess the energetic effects associated with complexation-induced deformations of molecular electron densities.  相似文献   

18.
The structure, energetics, and infrared spectrum of the H2O2-CO complex have been studied computationally with the use of ab initio calculations and experimentally by FTIR matrix isolation techniques. Computations predict two stable conformations for the H2O2-CO complex, both of which show almost linear hydrogen bonds between the subunits. The carbon-attached HOOH-CO complex is the lower-energy form, and it has an interaction energy of -9.0 kJmol(-1) at the CCSD(T)/6-311++G(3df,3pd)// MP2/6-311++G(3df,3pd) level. The higher-energy form, HOOH-OC, has an interaction energy of 4.7 kJmol(-1) at the same level of theory. Experimentally, only the lower-energy form, HOOH-CO, was observed in Ar, Kr, and Xe matrices, and the hydrogen bonding results in substantial perturbations of the observed vibrational modes of both complex subunits. UV photolysis of the complex species primarily produces a complex between water and carbon dioxide, but minor amounts of HCO and trans-HOCO were found as well.  相似文献   

19.
The potential-energy surface of the ground electronic state of CaHCl has been obtained from 6400 ab initio points calculated at the multireference configuration-interaction level and represented by a global analytical fit. The Ca+HCl-->CaCl+H reaction is endothermic by 5100 cm(-1) with a barrier of 4470 cm(-1) at bent geometry, taking the zero energy in the Ca+HCl asymptote. On both sides of this barrier are potential wells at linear geometries, a shallow one due to van der Waals interactions in the entrance channel, and a deep one attributed to the H(-)Ca(++)Cl(-) ionic configuration. The accuracy of the van der Waals well depth, approximately 200 cm(-1), was checked by means of additional calculations at the coupled-cluster singles and doubles with perturbative triples level and it was concluded that previous empirical estimates are unrealistic. Also, the electric dipole function was calculated, analytically fitted in the regions of the two wells, and used to analyze the charge shifts along the reaction path. In the insertion well, 16,800 cm(-1) deep, the electric dipole function confirmed the ionic structure of the HCaCl complex and served to estimate effective atomic charges. Finally, bound rovibrational levels were computed both in the van der Waals well and in the insertion well, and the infrared-absorption spectrum of the insertion complex was simulated in order to facilitate its detection.  相似文献   

20.
We report an ab initio intermolecular potential energy surface of the Ar-HCCCN complex using a supermolecular method. The calculations were performed using the fourth-order M?ller-Plesset theory with the full counterpoise correction for the basis set superposition error and a large basis set including bond functions. The complex was found to have a planar T-shaped structure minimum and a linear minimum with the Ar atom facing the H atom. The T-shaped minimum is the global minimum with the well depth of 236.81 cm(-1). A potential barrier separating the two minima is located at R=5.57 A and theta=20.39 degrees with the height of 151.59 cm(-1). The two-dimensional discrete variable representation was employed to calculate the rovibrational energy levels for Ar-HCCCN. The rovibrational spectra including intensities for the ground state and the first excited intermolecular vibrational state are also presented. The results show that the spectra are mostly b-type (Delta K(a)=+/-1) transitions with weak a-type (Delta K(a)=0) transitions in structure, which are in good agreement with the recent experimental results [A. Huckauf, W. Jager, P. Botschwina, and R. Oswald, J. Chem. Phys. 119, 7749 (2003)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号