首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron-phonon interactions in the monocation of corannulene are studied by using the hybrid Hartree-Fock (HF)/density-functional-theory (DFT) method in the Gaussian 98 program package. The C-C stretching mode of 1498 cm(-1) most strongly couples to the e1 highest occupied molecular orbitals (HOMO) in corannulene. The total electron-phonon coupling constant for the monocation (l(HOMO)) of corannulene is estimated to be 0.165 eV. The l(HOMO) value for corannulene is much larger than those for coronene and acenes with similar numbers of carbon atoms. The delocalized electronic structures and the intermediate characteristics between the strong sigma-orbital interactions and weak pi-orbital interactions originating from a bowl-shaped C(5v) geometry are the main reason that the l(HOMO) value for corannulene is much larger than those for planar D(6h) symmetric pi-conjugated coronene and D(2h) symmetric pi-conjugated acenes with similar numbers of carbon atoms. The electron transfer in the positively charged corannulene is also discussed. Intramolecular electron mobility (sigma(intra,monocation)) in the positively charged corannulene is estimated to be smaller than those for the positively charged pi-conjugated acenes and coronene. The reorganization energy for the positively charged corannulene (0.060 eV) is estimated to be larger than those for the positively charged acenes and coronene. The strong orbital interactions between two neighboring carbon atoms in the HOMO of corannulene with the bowl-shaped structure are the main reasons for the calculated results. Thus, the larger overlap integral between two neighboring molecules is needed for the positively charged corannulene to become a better conductor than those for positively charged coronene and acenes. The smaller density of states at the Fermi level n(0) values are enough for the conditions of the attractive electron-electron interactions to be realized in the monocation of corannulene than in the monocations of coronene and acenes with similar numbers of carbon atoms. The multimode problem is also treated in order to investigate how consideration of the multimode problem is closely related to the characteristics of the electron-phonon interactions.  相似文献   

2.
Novel anions that contain one molecule each of C60 and the polycyclic aromatic hydrocarbon coronene are generated in the gas phase by electron attachment desorption chemical ionization. Collision-induced dissociation reveals that these cluster ions are loosely bonded. Fragmentation of the mass-selected cluster anion yields, as the only products, the intact radical anions of the constituent molecules, namely, the C60 radical anion and the coronene radical anion, in almost identical relative abundances. This result is interpreted as evidence that the cluster ion can be considered as the anion radical of one molecule solvated by the other molecule. The known very high electron affinity of C60 (2.66 eV) and the comparable degree to which C60 and the PAH compete for the electron suggests that dissociation may be controlled by the electron affinity of a portion of the C60 surface, that is, in this case the kinetic method yields information on the local electron affinity of C60. The electron affinity of the bowl-shaped compound corannulene is estimated for the first time to be 0.50 ± 0.10 eV by the kinetic method by using a variety of reference compounds. Unlike coronene, corannulene reacts with C ?? 60 in the gas phase to form a covalently bonded, denydrogenated cluster ion. Support for the concept of “local” electron affinity of C60 comes from a theoretical calculation on the electronic structure of C60 anions, which shows evidence for localization of the charge in the C60 molecule. The possibility of electron tunneling in the C60-coronene system is discussed as an alternative explanation for the unusual observation of equal abundances of C60 anions and coronene anions upon dissociation of the corresponding cluster ion.  相似文献   

3.
Rate constants for electron attachment to the three isomers of trifluoromethylbenzonitrile [(CF(3))(CN)C(6)H(4), or TFMBN] were measured over the temperature range of 303-463 K in a 133-Pa He buffer gas, using a flowing-afterglow Langmuir-probe apparatus. At 303 K, the measured attachment rate constants are 9.0 x 10(-8) (o-TFMBN), 5.5 x 10(-8) (m-TFMBN), and 8.9 x 10(-8) cm(3) s(-1) (p-TFMBN), estimated accurate to +/-25%. The attachment process formed only the parent anion in all three cases. Thermal electron detachment was observed for all three anion isomers, and rate constants for this reverse process were also measured. From the attachment and detachment results, the electron affinities of the three isomers of TFMBN were determined to be 0.70(o-TFMBN), 0.67(m-TFMBN), and 0.83 eV (p-TFMBN), all +/-0.05 eV. G3(MP2) [Gaussian-3 calculations with reduced M?ller-Plesset orders (MP2)] calculations were carried out for the neutrals and anions. Electron affinities derived from these calculations are in good agreement with the experimental values.  相似文献   

4.
The electron stimulated desorption (ESD) of anions is used to explore the effects of electron irradiation on a thiophene film and we report measurements for electron impact on multilayer thiophene condensed on a polycrystalline platinum substrate. Below 22 eV and at low electron dose, desorbed anions include H- (the dominant signal) as well as S-, CH2-, SH- and SCH2-. Yield functions show that anions are desorbed both by dissociative electron attachment (DEA) with resonances observed at 9.5, 11, and 16 eV, and for energies >13 eV, by dipolar dissociation (DD). An increase in the S- signal from electron irradiated (beam-damaged) thiophene films and the appearance of a new DEA resonance in the S- yield function at 6 eV are linked to rupture of the thiophene ring and the formation of sulfur-terminated products within the film. The threshold energy for ring rupture is 5 eV. The desorption of new anions such as C4H3S- (Thiophene-H)- is also observed from electron irradiated films and these likely arise from the decomposition of large radiation product molecules synthesized in the film. The yield functions of H-, S-, SH-, (Thiophene-H)-, and (Thiophene+H)- anions from irradiated thiophene films that have been annealed to 300 K, each exhibit a single resonant feature centered around 5.1 eV, suggesting that all signals derive from DEA to the same molecular radiation product. In contrast, only H- and S- are observed to desorb from films of 2-2-bithiophene and no resonance is seen below approximately 10 eV in the anion yield functions. These data suggest that electron irradiation causes formation of ring-opened oligomers, and that closed-ring or 'classical" oligomers, (similar to bithiophene) if formed, contribute little to the ESD of anions.  相似文献   

5.
We present results about dissociative electron attachment (DEA) to gas-phase uracil (U) for incident electron energies between 0 and 14 eV using a crossed electron/molecule beam apparatus. The most abundant negative ion formed via DEA is (U-H)-, where the resonance with the highest intensity appears at 1.01 eV. The anion yield of (U-H)- shows a number of peaks, which can be explained in part as being due to the formation of different (U-H)- isomers. Our results are compared with high level ab initio calculations using the G2MP2 method. There was no measurable amount of a parent ion U-. We also report the occurrence of 12 other fragments produced by dissociative electron attachment to uracil but with lower cross sections than (U-H)-. In addition we observed a parasitic contaminating process for conditions where uracil was introduced simultaneously with calibrant gases SF6 and CCl4 that leads to a sharp peak in the (U-H)- cross section close to 0 eV. For (U-H)- and all other fragments we determined rough measures for the absolute partial cross section yielding in the case of (U-H)- a peak value of sigma (at 1.01 eV)=3 x 10(-20) m2.  相似文献   

6.
Electron‐transfer processes that involve single and doubly charged cations of corannulene (C20H10) and coronene (C24H12) are examined by three different mass‐spectrometric techniques. Photoionization studies give first‐ionization energies of IE(C20H10)=7.83±0.02 eV and IE(C24H12)=7.21 ±0.02 eV. Photoionizations of the neutrals to the doubly charged cations occur at thresholds of 20.1±0.2 eV and 18.5±0.2 eV for corannulene and coronene, respectively. Energy‐resolved charge‐stripping mass spectrometry yields kinetic energy deficits of Qmin(C20H=13.8±0.3 eV and Qmin(C24H=12.8±0.3 eV for the transitions from the mono‐ to the corresponding dications in keV collisions. Reactivity studies of the C20H and C24H dications in a selected‐ion flow‐tube mass spectrometer are used to determine the onsets for the occurrence of single‐electron transfer from several neutral reagents to the dications, affording two different monocationic products. With decreasing IEs of the neutral reagents, electron transfer to doubly charged corannulene is first observed with hexafluorobenzene (IE=9.91 eV), while neutrals with lower IEs are required in the case of the coronene dication, e.g., NO2 (IE=9.75 eV). Density‐functional theory is used to support the interpretation of the experimental data. The best estimates of the ionization energies evaluated are IE(C20H10)=7.83±0.02 eV and IE(C24H12)=7.21 ±0.02 eV for the neutral molecules, and IE(C20H)=12.3±0.2 eV and IE(C24H)=11.3±0.2 eV for the monocations.  相似文献   

7.
We report that the absolute cross sections for dissociative attachment of approximately 0 eV electrons to chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) are strongly enhanced by the presence of H2O ice. The absolute cross sections for CFCl3, CHF2Cl, and CH3CF2Cl on water ice are measured to be approximately 8.9 x 10(-14), approximately 5.1 x 10(-15), and approximately 4.9 x 10(-15) cm2 at approximately 0 eV, respectively. The former value is about 1 order of magnitude higher than that in the gas phase, while the latter two are 3-4 orders higher. In contrast, the resonances at electron energies > or = 2.0 eV are strongly suppressed either for CFCs and HCFCs or for CF4 adsorbed on H2O ice. The cross-section enhancement is interpreted to be due to electron transfer from precursor states of the solvated electron in ice to an unfilled molecular orbital of CFCs or HCFCs followed by its dissociation. This study indicates that electron-induced dissociation is a significant process leading to CFC and HCFC fragmentation on ice surfaces.  相似文献   

8.
Using a crossed electron/molecule beam technique the dissociative electron attachment (DEA) to gas phase L-valine, (CH(3))(2)CHCH(NH(2))COOH, is studied by means of mass spectrometric detection of the product anions. Additionally, ab initio calculations of the structures and energies of the anions and neutral fragments have been carried out at G2MP2 and B3LYP levels. Valine and the previously studied aliphatic amino acids glycine and alanine exhibit several common features due to the fact that at low electron energies the formation of the precursor ion can be characterized by occupation of the pi* orbital of the carboxyl group. The dominant negative ion (M-H)(-) (m/Z=116) is observed at electron energies of 1.12 eV. This ion is the dominant reaction product at electron energies below 5 eV. Additional fragment ions with m/Z=100, 72, 56, 45, 26, and 17 are observed both through the low lying pi* and through higher lying resonances at about 5.5 and 8.0-9.0 eV, which are characterized as core excited resonances. According to the threshold energies calculated here, rearrangements play a significant role in the formation of DEA fragments observed from valine at subexcitation energies.  相似文献   

9.
Rate coefficients have been measured for electron attachment to oxalyl chloride [ClC(O)C(O)Cl] and oxalyl bromide [BrC(O)C(O)Br] in He gas at 133 Pa pressure over the temperature range of 300-550 K. With oxalyl chloride, the major ion product of attachment is Cl2(-) at all temperatures (66% at 300 K); its importance increases slightly as temperature increases. Two other product ions formed are Cl- (18% at 300 K) and the phosgene anion CCl2O- (16% at 300 K) and appear to arise from a common mechanism. With oxalyl bromide, the Br2(-) channel represents almost half of the ion product of attachment, independent of temperature. Br- accounts for the remainder. For oxalyl chloride, the attachment rate coefficient is small [(1.8 +/- 0.5) x 10(-8) cm3 s(-1) at 300 K], and increases with temperature. The attachment rate coefficient for oxalyl bromide [(1.3 +/- 0.4) x 10(-7) cm3 s(-1) at 300 K] is nearly collisional and increases only slightly with temperature. Stable parent anions C2Cl2O2(-) and C2Br2O2(-) and adduct anions Cl- (C2Cl2O2) and Br- (C2Br3O2) were observed but are not primary attachment products. G2 and G3 theories were applied to determine geometries of products and energetics of the electron attachment and ion-molecule reactions studied. Electron attachment to both oxalyl halide molecules leads to a shorter C-C bond and longer C-Cl bond in the anions formed. Trans and gauche conformers of the neutral and anionic oxalyl halide species have similar energies and are more stable than the cis conformer, which lies 100-200 meV higher in energy. For C2Cl2O2, C2Cl2O2(-), and C2Br2O2(-), the trans conformer is the most stable conformation. The calculations are ambiguous as to the oxalyl bromide geometry (trans or gauche), the result depending on the theoretical method and basis set. The cis conformers for C2Cl2O2 and C2Br2O2 are transition states. In contrast, the cis conformers of the anionic oxalyl halide molecules are stable, lying 131 meV above trans-C2Cl2O2(-) and 179 meV above trans-C2Br2O2(-). Chien et al. [J. Phys. Chem. A 103, 7918 (1999)] and Kim et al. [J. Chem. Phys. 122, 234313 (2005)] found that the potential energy surface for rotation about the C-C bond in C2Cl2O2 is "extremely flat." Our computational data indicate that the analogous torsional surfaces for C2Br2O2, C2Cl2O2(-), and C2Br2O2(-) are similarly flat. The electron affinity of oxalyl chloride, oxalyl bromide, and phosgene were calculated to be 1.91 eV (G3), and 2.00 eV (G2), and 1.17 eV (G3), respectively.  相似文献   

10.
The empty-level electronic structures of pyrimidine and its 2-chloro, 2-bromo, and 5-bromo derivatives have been studied with electron transmission spectroscopy (ETS) and dissociative electron attachment spectroscopy (DEAS) in the 0-5 eV energy range. The spectral features were assigned to the corresponding anion states with the support of theoretical calculations at the ab initio and density functional theory levels. The empty orbital energies obtained by simple Koopmans' theorem calculations, scaled with empirical equations, quantitatively reproduced the energies of vertical electron attachment to π* and σ* empty orbitals measured in the ET spectra and predicted vertical electron affinities close to zero for the three halo derivatives. The total anion currents of the halo derivatives, measured at the walls of the collision chamber as a function of the impact electron energy, presented intense maxima below 0.5 eV. The mass-selected spectra showed that, in this energy, range the total anion current is essentially due to halide fragment anions. The DEA cross sections of the bromo derivatives were found to be about six times larger than that of the chloro derivative. The absolute cross sections at incident electron energies close to zero were evaluated to be 10(-16)-10(-15) cm(2).  相似文献   

11.
Multiple electron affinities are identified in the temperature dependence of the electron-capture detector: naphthalene, 0.16, 0.13+/-0.01, anthracene, 0.69, 0.60, 0 53+/-0.01; tetracene 1.1, 0.88+/-0.03, 0.53+/-0.05; pyrene, 0.61, 0.50+/-0.02; azulene 0.90, 0.80, 0.70+/-0.02, 0.65, 0.55+/-0.05; acenaphthylene, 0.80, 0.69, 0.60, 0.50+/-0.05; and c-C8H8, 0.80, 0.70, 0.55+/-0.02; (all in eV). These are obtained from a rigorous least squares procedure incorporating literature values and uncertainties. The adiabatic electron affinities for about 40 hydrocarbons listed in the US National Institute of Standards and Technology (NIST) tables are evaluated. The adiabatic electron affinity values not listed in NIST are biphenylene, 0.45+/-0.05 eV and coronene. 0.8+/-0.05 eV. Morse potential energy curves in the C-H dimensions illustrate multiple states for benzene and naphthalene.  相似文献   

12.
Electron attachment to pentafluorobenzonitrile (C(6)F(5)CN) and pentafluoronitrobenzene (C(6)F(5)NO(2)) is studied in the energy range 0-16 eV by means of a crossed electron-molecular beam experiment with mass spectrometric detection of the anions. We find that pentafluoronitrobenzene exclusively generates fragment anions via dissociative electron attachment (DEA), while pentafluorobenzonitrile forms a long lived parent anion within a narrow energy range close to 0 eV and additionally undergoes DEA at higher energies. This is in contrast to the behaviour of the non-fluorinated analogues as in nitrobenzene the non-decomposed anion is formed while in benzonitrile only DEA is observed. The associated reactions involve simple bond cleavages but also complex unimolecular decompositions associated with structural and electronic rearrangement also resulting in the deterioration of the cyclic structure.  相似文献   

13.
Free-electron attachment to thymine and partially deuterated thymine, where D replaces H at all carbon atoms, is studied in the electron energy range from about 0 to 15 eV. The formation of fragment anions that are formed by the loss of one or two H (D) atoms is analyzed as a function of the incident electron energy using a crossed electron/neutral beam apparatus in combination with a quadrupole mass spectrometer. By using partially deuterated thymine and quantum-chemical calculation a bond selectivity for the loss of one and two hydrogen atoms is observed that is determined only by the kinetic energy of the incident electron.  相似文献   

14.
The energy and nature of the gas-phase temporary anion states of tert-butylperoxybenzoate in the 0-6 eV energy range are determined for the first time by means of electron transmission spectroscopy (ETS) and appropriate theoretical calculations. The first anion state, associated with electron capture into a delocalized π* MO with mainly ring and carbonyl character, is found to lie close to zero energy, i.e., sizably more stable (about 2 eV) than the ground (σ*) anion state of saturated peroxides. Dissociative decay channels of the unstable parent molecular anions are detected with dissociative attachment spectroscopy (DEAS), as a function of the incident electron energy, in the 0-14 eV energy range. A large DEA cross-section, with maxima at zero energy, 0.7 and 1.3 eV, is found for production of the (m/e = 121) PhCOO(-) anion fragment, together with the corresponding tert-butoxy neutral radical, following cleavage of the O-O bond. Although with much smaller intensities, a variety of other negative currents are observed and assigned to the corresponding anion fragments with the support of density functional theory calculations.  相似文献   

15.
Rate constants and ion product channels have been measured for electron attachment to four SF5 compounds, SF5C6H5, SF5C2H3, S2F10, and SF5Br, and these data are compared to earlier results for SF6, SF5Cl, and SF5CF3. The present rate constants range over a factor of 600 in magnitude. Rate constants measured in this work at 300 K are 9.9+/-3.0x10(-8) (SF5C6H5), 7.3+/-1.8x10(-9) (SF5C2H3), 6.5+/-2.5x10(-10) (S2F10), and 3.8+/-2.0x10(-10) (SF5Br), all in cm3 s-1 units. SF5- was the sole ionic product observed for 300-550 K, though in the case of S2F10 it cannot be ascertained whether the minor SF4- and SF6- products observed in the mass spectra are due to attachment to S2F10 or to impurities. G3(MP2) electronic structure calculations (G2 for SF5Br) have been carried out for the neutrals and anions of these species, primarily to determine electron affinities and the energetics of possible attachment reaction channels. Electron affinities were calculated to be 0.88 (SF5C6H5), 0.70 (SF5C2H3), 2.95 (S2F10), and 2.73 eV (SF5Br). An anticorrelation is found for the Arrhenius A-factor with exothermicity for SF5- production for the seven molecules listed above. The Arrhenius activation energy was found to be anticorrelated with the bond strength of the parent ion.  相似文献   

16.
The dissociative electron attachment to the gas phase nucleobase adenine is studied using two different experiments. A double focusing sector field mass spectrometer is utilized for measurements requiring high mass resolution, high sensitivity, and relative ion yields for all the fragment anions and a hemispherical electron monochromator instrument for high electron energy resolution. The negative ion mass spectra are discussed at two different electron energies of 2 and 6 eV. In contrast to previous gas phase studies a number of new negative ions are discovered in the mass spectra. The ion efficiency curves for the negative ions of adenine are measured for the electron energy range from about 0 to 15 eV with an electron energy resolution of about 100 meV. The total anion yield derived via the summation of all measured fragment anions is compared with the total cross section for negative ion formation measured recently without mass spectrometry. For adenine the shape of the two cross section curves agrees well, taking into account the different electron energy resolutions; however, for thymine some peculiar differences are observed.  相似文献   

17.
We report the photon-stimulated desorption of negative ions induced by direct dipolar dissociation and dissociative electron attachment. The photon-stimulated desorption of F(-) ions from CF(3)Cl physisorbed on a Si(111)-7x7 surface at 30 K in the photon energy range 12-35 eV was studied. The F(-) ion yield exhibits four resonances, at 12.8, 16.2, 19.5, and 22.3 eV, quite unlike the gas phase photodissociation cross section. The intensities of these resonances depend strongly on the CF(3)Cl coverage in a manner which varies from peak to peak. The resonances at 19.5 and 22.3 eV, which have a significant enhancement in the monolayer regime, are due to electron mediated dipolar dissociation of adsorbed CF(3)Cl molecules. The enhancement is attributed to surface electron attachment following molecular excitation. A significant enhancement in the monolayer regime has also been observed for the resonances at 12.8 and 16.2 eV. These two resonances are ascribable to a combination of electron mediated dipolar dissociation and dissociative electron attachment driven by photoelectrons generated in the neighboring molecules.  相似文献   

18.
Ion pair formation, generically described as AB-->A(+)+B(-), from vacuum-UV photoexcitation of trifluoromethyl sulfur pentafluoride, SF(5)CF(3), has been studied by anion mass spectrometry using synchrotron radiation in the photon energy range of 10-35 eV. The anions F(-), F(2)(-), and SF(x)(-) (x=1-5) are observed. With the exception of SF(5)(-), the anions observed show a linear dependence of signal with pressure, showing that they arise from ion pair formation. SF(5)(-) arises from dissociative electron attachment, following photoionization of SF(5)CF(3) as the source of low-energy electrons. Cross sections for anion production are put on to an absolute scale by calibration of the signal strengths with those of F(-) from both SF(6) and CF(4). Quantum yields for anion production from SF(5)CF(3), spanning the range of 10(-7)-10(-4), are obtained using vacuum-UV absorption cross sections. Unlike SF(6) and CF(4), the quantum yield for F(-) production from SF(5)CF(3) increases above the onset of photoionization.  相似文献   

19.
The B3LYP/DZP++ level of theory has been employed to investigate the structures and energetics of the deprotonated adenine-uracil base pairs, (AU-H)-. Formation of the lowest-energy structure, [A(N9)-U]- (which corresponds to deprotonation at the N9 atom of adenine), through electron attachment to the corresponding neutral is accompanied by proton transfer from the uracil N3 atom to the adenine N1 atom. The driving force for this proton transfer is a significant stabilization from the base pairing in the proton transferred form. Such proton transfer upon electron attachment is also observed for the [A(N6b)-U]- and [A(C2)-U]- anions. Electron attachment to the A-U(N3) radical causes strong lone pair repulsion between the adenine N1 and the uracil N3 atoms, driving the two bases apart. Similarly, lone pair repulsion in the anion A(N6a)-U causes the loss of coplanarity of the two base units. The computed adiabatic electron attachment energies for nine AU-H radicals range from 1.86 to 3.75 eV, implying that the corresponding (AU-H)- anions are strongly bound. Because of the large AEAs of the (AU-H) radicals, the C-H and N-H bond dissociation in the AU- base pair anions requires less energy than the neutral AU base pair. The computed C-H and N-H bond dissociation energies for the AU- anion (i.e., the AU base pair plus one electron) are in the range 1.0-3.2 eV, while those for neutral AU are 4.08 eV or higher.  相似文献   

20.
Electron attachment to CO? clusters performed at high energy resolution (0.1 eV) is studied for the first time in the extended electron energy range from threshold (0 eV) to about 10 eV. Dissociative electron attachment (DEA) to single molecules yields O(-) as the only fragment ion arising from the well known (2)Π(u) shape resonance (ion yield centered at 4.4 eV) and a core excited resonance (at 8.2 eV). On proceeding to CO? clusters, non-dissociated complexes of the form (CO?)(n)(-) including the monomer CO?(-) are generated as well as solvated fragment ions of the form (CO?)(n)O(-). The non-decomposed complexes appear already within a resonant feature near threshold (0 eV) and also within a broad contribution between 1 and 4 eV which is composed of two resonances observed for example for (CO?)(4)(-) at 2.2 eV and 3.1 eV (peak maxima). While the complexes observed around 3.1 eV are generated via the (2)Π(u) resonance as precursor with subsequent intracluster relaxation, the contribution around 2.2 eV can be associated with a resonant scattering feature, recently discovered in single CO? in the selective excitation of the higher energy member of the well known Fermi dyad [M. Allan, Phys. Rev. Lett., 2001, 87, 0332012]. Formation of (CO?)(n)(-) in the threshold region involves vibrational Feshbach resonances (VFRs) as previously discovered via an ultrahigh resolution (1 meV) laser photoelectron attachment method [E. Leber, S. Barsotti, I. I. Fabrikant, J. M. Weber, M.-W. Ruf and H. Hotop, Eur. Phys. J. D, 2000, 12, 125]. The complexes (CO?)(n)O(-) clearly arise from DEA at an individual molecule within the cluster involving both the (2)Π(u) and the core excited resonance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号