首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The above-threshold dissociation of the ground state of a OH molecule under intense nonresonant laser pulses has been studied using the time-dependent Schr?dinger equation with discrete variable representation. The applied field is assumed as a two-color mixed nonresonant laser pulses which has the nonresonant frequency omega and the overtone 2omega. After modulating the relative phase factor between the omega and 2omega pulse, we extracted a three-photon absorption peak or a five-photon absorption peak in the ATD spectrum.  相似文献   

2.
Coherent phase control of the photodissociation reaction of the dimethylsulfide has been achieved by means of quantum-mechanical interference between one- and three-photon transitions. Dimethylsulfide was irradiated by fundamental and frequency-tripled outputs of a visible laser (600.5-602.5 nm), simultaneously to yield CH3S+ and CH3SCH2+ fragment ions. The branching ratio of the two product channels could be modulated with variation of the phase difference between the light fields. This accounted for the difference between the molecular phases of the two product channels. The phase lag was observed to have a maximum value of 8 degrees at 601.5 nm. This is the first result of a selective bond breaking in a polyatomic molecule by the coherent phase control.  相似文献   

3.
1995年,人们曾预言"量子控制多体动力学将成为化学物理的主流"(引自第20届Solvay化学会议上Stuart A.Rice的主旨演说.Solvay会议是研讨未来科学的高级会议.这一届会议的主题是"光化学: 化学反应及其飞秒尺度上的控制"). 现在, 我们看到了这股潮流正源源而来,每年都不断地在Nature、 Science等杂志上刻下了里程碑.  相似文献   

4.
Dynamics of molecules in an intense laser field is studied in terms of the quantum electronic wave packet coupled with classical nuclear motions. The equations of motion are derived taking a proper account of molecular interactions with the vector potential of a classical electromagnetic field, along with the nonadiabatic interaction due to the breakdown of the Born-Oppenheimer approximation. With the aid of electronic structure calculations, the present method enables us to track, in an ab initio manner, the dynamics of polyatomic molecules in an intense field. Preliminary calculations are carried out for the vibrational state of LiF and a collision of Li+F under an intense laser pulse, which are limited to the domain of no ionization.  相似文献   

5.
A method to solve the equations for the Morse oscillator under intense time-dependent external fields is presented. Exact analytical formulas for the dipole matrix elements are calculated by the use of the hypergeometric algebra. The continuum is described by an expansion using Laguerre functions. The full algorithm for the calculation of wave functions can be controlled by the convergence of series and by the errors of a first order integration method. We apply our technique to the selective preparation of high overtones by femtosecond laser pulses. The population of the target state is optimized as a function of the intensity and frequency. Introducing a second simultaneous laser, we study the effects of relative frequency and phase over the target state population and dissociation channels. The calculations exhibit a rich interference pattern showing the enhancement and the suppression of the target population by varying the laser parameters.  相似文献   

6.
This article reviews experimental efforts to control multiphoton transitions using shaped femtosecond laser pulses, and it lays out the systematic study being followed by us for elucidating the effect of phase on nonlinear optical laser-molecule interactions. Starting with a brief review of nonlinear optics and how nonlinear optical processes depend on the electric field inducing them, a number of conclusions can be drawn directly from analytical solutions of the equations. From a Taylor expansion of the phase in the frequency domain, we learn that nonlinear optical processes are affected only by the second- and higher-order terms. This simple result has significant implications on how pulse-shaping experiments are to be designed. If the phase is allowed to vary arbitrarily as a continuous function, then an infinite redundancy that arises from the addition of a linear phase function across the spectrum with arbitrary offset and slope could prevent us from carrying out a closed-loop optimization experiment. The early results illustrate how the outcome of a nonlinear optical transition depends on the cooperative action of all frequencies in the bandwidth of a laser pulse. Maximum constructive or destructive interference can be achieved by programming the phase using only two phase values, 0 and pi. This assertion has been confirmed experimentally, where binary phase shaping (BPS) was shown to outperform other alternative functions, sometimes by at least on order of magnitude, in controlling multiphoton processes. Here we discuss the solution of a number of nonlinear problems that range from narrowing the second harmonic spectrum of a laser pulse to optimizing the competition between two- and three-photon transitions. This Review explores some present and future applications of pulse shaping and coherent control.  相似文献   

7.
The prospect of controlling the photofragmentation of deuterium chloride ions (DCl+) via strong ultrashort IR laser pulses has been investigated by a numerical solution of coupled Schrodinger equations. The calculations provide evidence that the ratio of product ion yields Cl+ versus D+ can be manipulated by an appropriate choice of laser pulse parameters, in particular, central laser frequency, pulse duration, intensity, and chirp. The analysis of time-dependent populations reveals competition between intra- and interelectronic state excitations, enabling the understanding of quantum control at the molecular level.  相似文献   

8.
Electronic excitation of metal by intense laser pulses stimulates nuclear motions of adsorbates through nonadiabatic coupling, resulting in diffusion and desorption of adsorbates. These processes take place via precursor states: adsorbates whose vibrational modes with respect to substrate are highly excited. This paper reports the dynamics of precursor states of CO on Pt(111) probed by use of infrared-visible sum frequency generation with phase-sensitive detection, which allows us to obtain the second-order nonlinear susceptibility and thus the vibrational response function. Without pump pulses at 400 nm, the inverse Fourier transformation of the vibrational response function reveals a free induction decay of vibrational polarization of C-O stretching created by a short infrared pulse. The free induction decay is perturbed when an intense 400-nm pump pulse following the infrared pulse is irradiated, because diffusion and desorption of CO are induced by the pump pulse. The time evolution of instantaneous C-O stretching frequency retrieved from the perturbed free induction decay shows a redshift followed by a rapid reverse shift when the fluence of pump pulse is high enough to desorb CO. This indicates that the frustrated modes of CO is first substantially excited and then the parallel momentum of CO is converted to the normal one through mutual collisions, leading to substantial excitation of the external stretching mode of CO.  相似文献   

9.
One-, two-, and three-photon absorption induced fluorescence intensities of a novel nonlinear optical chromophore have been measured by using a tunable femtosecond pulsed laser as the excitation. Four resonance peaks are observed as the excitation wavelength is tuned from 600 to 2000 nm. These peaks correspond to the one-, two- and three-photon fluorescence resonance. Except for intensity difference, the lifetime and the fluorescence spectrum are found to be the same for the one-, two-, or three-photon resonance, hence suggesting that the same excited energy level is involved in emitting the fluorescence intensity. A three-level model is developed to account for the incident excitation laser intensity dependence of the one-photon and multiphoton fluorescence intensity. The model allows the multiphoton absorption cross sections to be extracted; it can also account for the deviation observed in the linear, square, and cubic intensity dependence of the one-, two-, and three-photon fluorescence intensity, respectively. To determine the absorption cross sections, the present method does not require the fluorescence quantum efficiency data, needed in the low intensity technique.  相似文献   

10.
Although polaronic interactions and states abound in charge transfer processes and reactions, quantitative and separable determination of electronic and nuclear relaxation is still challenging. The present paper employs the amplitudes, polarizations, and phases of four-wave mixing signals to obtain unique dynamical information on relaxation processes following photoinduced charge transfer between iodide and 1-ethyl-4-(carbomethoxy)pyridinium ions. Pump-probe signal amplitudes reveal the coherent coupling of an underdamped 115 cm(-1) nuclear mode to the charge transfer excitation. Assignments of this recurrence to intramolecular vibrational modes of the acceptor and to modulation of the intermolecular donor-acceptor distance are discussed on the basis of a high-level density functional theory normal-mode analysis and previously observed wave packet dynamics of solvated molecular iodine. Nuclear relaxation of the acceptor induces sub-picosecond decay of the pump-probe polarization anisotropy from an initial value of 0.4 to an asymptotic value of -0.05. Electronic structure calculations suggest that relaxation along the torsional coordinate of the ethyl group is the origin of the anisotropy decay. Electric-field-resolved transient grating (EFR-TG) signal fields are obtained by spectral interferometry with a diffractive optic based interferometer. These measurements show that the signal phase and amplitude possess similar dynamics. Model calculations are used to demonstrate how the EFR-TG signal phase yields unique information on transient material resonances located outside the laser pulse spectrum. This effect can be rationalized in that the real and imaginary parts of the nonlinear polarization are related by the Kramers-Kronig transformation, which allows the dispersive component of the polarization response to exhibit spectral sensitivity over a larger frequency range than that defined by the absorption bandwidth.  相似文献   

11.
Quantum control of the lifetime of a system in an excited resonance state is investigated theoretically by creating coherent superpositions of overlapping resonances. This control scheme exploits the quantum interference occurring between the overlapping resonances, which can be controlled by varying the width of the laser pulse that creates the superposition state. The scheme is applied to a realistic model of the Br(2)(B)-Ne predissociation decay dynamics through a three-dimensional wave packet method. It is shown that extensive control of the system lifetime is achievable, both enhancing and damping it remarkably. An experimental realization of the control scheme is suggested.  相似文献   

12.
Femtosecond degenerate four-wave-mixing spectroscopy following an initial pump laser pulse was used to observe the wave packet dynamics in excited electronic states of gas phase iodine. The focus of the investigation was on the ion pair states belonging to the first tier dissociating into the two ions I-(1S) + I+(3P2). By a proper choice of the wavelengths of the initial pump and degenerate four-wave-mixing pulses, we were able to observe the vibrational dynamics of the B (3)Pi(u) (+) state of molecular iodine as well as the ion pair states accessible from there by a one-photon transition. The method proves to be a valuable tool for exploring higher lying states that cannot be directly accessed from the ground state due to selection rule exclusion or unfavorable Franck-Condon overlap.  相似文献   

13.
利用2D平面模型,求解了描述定向H2^+分子和阿秒XUV脉冲相互作用的薛定谔方程,并求得光电子的角度分布.在计算模型中,采用基态1sσg和第一激发态2pσu的等比例混合态作为初始态,而激光脉冲的光子能量大于电离势,强度为10^14 W/cm^2. 计算结果表明,光电子角分布的非对称性和脉冲的宽度密切相关.这种非对称性实际上是由于初始态的基态和激发态的相干振荡而导致的.当使用长脉冲时,这种相干振荡的周期效应就会被平均而消失,从而产生的光电子能谱会呈对称角分布.  相似文献   

14.
High-level ab initio electronic structure calculations are used to interpret the fragmentation dynamics of CHBr(2)COCF(3), following excitation with an intense ultrafast laser pulse. The potential energy surfaces of the ground and excited cationic states along the dissociative C-CF(3) bond have been calculated using multireference second order perturbation theory methods. The calculations confirm the existence of a charge transfer resonance during the evolution of a dissociative wave packet on the ground state potential energy surface of the molecular cation and yield a detailed picture of the dissociation dynamics observed in earlier work. Comparisons of the ionic spectrum for two similar molecules support a general picture in which molecules are influenced by dynamic resonances in the cation during dissociation.  相似文献   

15.
We show how the spatial phase of a focused laser beam may be used as a tool for controlling the branching ratio of a chemical reaction. Guoy discovered [Acad. Sci., Paris, C. R. 110, 1250 (1890)] that when an electromagnetic wave passes through a focus its phase increases by pi. In a coherent control scheme involving the absorption of n photons of frequency omega(m) and m photons of frequency omega(n), the overall phase shift produced by the Gouy phase is (n-m)pi. At any given point in space, this phase shift is identical for all reaction products. Nevertheless, if the yields for different reaction channels have different intensity dependencies, the Gouy phase produces a net phase lag between the products that varies with the axial coordinate of the laser focus. We obtain here analytical and numerical values of this phase as the laser focus is scanned across the diameter of the molecular beam, taking into account the Rayleigh range and astigmatism of the laser beam and saturation of the transition. We also show that the modulation depth of the interference pattern may be increased by optimizing the relative intensities of the two fields.  相似文献   

16.
We demonstrate theoretically that laser-induced coherent quantum interference control of asymptotic states of dissociating molecules is possible--even in the (one-photon) weak-field limit starting from a single vibrational eigenstate--when resonances are in play. This is illustrated for the NaI molecule, where it is shown that the probability of observing atomic fragments as well as the distribution of their relative momenta can be changed by a phase modulated pulse with a fixed bandwidth. This type of control is restricted to finite times during the indirect fragmentation.  相似文献   

17.
We consider in this work a high resolution, Doppler-free, one-photon, optical absorption differential spectroscopy of a mixture of two different mutually interacting gases or vapors in order to display the effects of this interaction directly in the optical spectra. Those interactions are restricted to binary collisions and they are treated in the so-called impact approximation (hard collisions). Usually, the high resolution, Doppler-free optical spectra are observed when two counterpropagating laser beams pass through the gas cell. One beam is strong enough to saturate the optical transition to several different degrees. The other beam is a weak probe absorbed by the saturated atomic or molecular pair of energy levels (a two-energy level system with angular frequency ω0). The laser beams are supposed to have different angular frequencies and to be linearly polarized. In order to achieve the Doppler-free differential optical absorption one-photon spectra, a convenient geometrical experimental set up is proposed.  相似文献   

18.
In this paper the authors compare 400 nm one-photon and 800 nm two-photon two-dimensional Fourier transform electronic spectra of the organic laser dye Coumarin 102 in methanol using collinear optical pulse sequences and phase cycling. Results from the two different experiments show differences in the photon echo peak positions and shapes, reflecting differences in the two-photon and one-photon selection rules.  相似文献   

19.
20.
We study wave packet interferometry (WPI) considering the laser pulse fields both classical and quantum mechanically. WPI occurs in a molecule after subjecting it to the interaction with a sequence of phase-locked ultrashort laser pulses. Typically, the measured quantity is the fluorescence of the molecule from an excited electronic state. This signal has imprinted the interference of the vibrational wave packets prepared by the different laser pulses of the sequence. The consideration of the pulses as quantum entities in the analysis allows us to study the entanglement of the laser pulse states with the molecular states. With a simple model for the molecular system, plus several justified approximations, we solve for the fully quantum mechanical molecule-electromagnetic field state. We then study the reduced density matrices of the molecule and the laser pulses separately. We calculate measurable corrections to the case where the fields are treated classically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号