首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Under the condition that all the stress components at a crack-tip are the functionsofθonly,making use of the equations of steady-state motion,stress-strain relationsand Hill anisotropic yield conditions,we obtain the general solutions at a crack-tip inboth the cases of anti-plane and in-plane strains.Applying these general solutions tothe concrete cracks,the anisotropic plastic fields at the rapidly propagating tips ofmodeⅢand modeⅠcracks are derived.  相似文献   

2.
The results in Ref.[1]are not suitable for the cases of a≥2 .For this reason,we use the method in Ref.[1]to derive the general expressions of the anisotropic plastic stress fields at a stationary plane-stress crack-tip for both of the cases of a=2 and a>2 .As an example,we give the analytical expressions of the anisotropic plastic stress fields at the stationary tips of modeⅠand modeⅡplane-stress cracks for the case of a=2.  相似文献   

3.
ASUPPLEMENTARYSTUDYOFANISOTROPICPLASTICFIELDSATARAPIDLYPROPAGATINGPLANE-STRESSCRACK-TIP(I)LinBaisong(林拜松)(ReceivedJuly15.1994...  相似文献   

4.
Under the condition that all the perfectly plastic stress components at a crack tiP arethe functions ofθonly,making use of the Mises yield condition,steady-state movingequations and elastic perfectly-plastic constitutive equations,we derive the generallyanalytical expressions of perfectly plastic fields at a rapidly propagating plane-stress cracktip.Applying these generally analytical expressions to the concrete crack,we obtain theanalytical expressions of perfectly plastic fields at the rapidly propagating tips of,modesⅠandⅡplane-stress cracks.  相似文献   

5.
All the stress components at a rapidly propagating crack-tip in an elastic perfectly-plastic material are the functions of only. Making use of this condition and the equations of steady-state motion, stress-strain relations and Hill anisotropic yield condition, we obtain the general solutions in both the cases of anti-plane and in-plane strain. Applying these two general solutions to propagating Mode III and Mode I cracks, respectively, the anisotropic plastic stress fields at the rapidly propagating tips of Mode III and Mode I cracks are derived.  相似文献   

6.
All the stress components at a rapidly propagating crack-tip in elastic perfectly-plasticmaterial are the functions ofθonly.Making use of this condition and the equations ofsteady-state motion,plastic stress-strain relations,and Mises yield condition with Poissonratio,in this paper,we derive the general expression of perfectly plastic field at a rapidlypropagating plane-strain crack-tip.Applying this general expression with Poisson ratio toModeⅠcrack,the perfectly plastic field at the rapidly propagating tip of ModeⅠplane-strain crack is obtained.This perfectly plastic field contains a Poisson ratio,and thus,wecan obtain the effect of Poisson ratio on the perfectly plastic field at the rapidly propagatingtip of ModeⅠplane-strain crack.  相似文献   

7.
Under the condition that all the stress components at a crack-tip are the functions of θ only, making use of equilibrium equations and hydrostatic stress-dependent yield condition, in this paper, we derive the generally analytical expressions of the hydrostatic stress-dependent perfectly-plastic stress fields at a stationary plane-stress crack-tip. Applying these generally analytical expressions to the concrete cracks, the analytical expressions of hydrostatic stress-dependent perfectly-plastic stress fields at the tips of mode Ⅰ and mode Ⅱ cracks are obtained.  相似文献   

8.
Under the condition that all the perfectly plastic stress components at a crack tip are the functions of only, making use of the Treasca yield condition, steady-state moving equations and elastic perfectly-plastic constitutive equations, we derive the generally analytical expressions of perfectly palstic stress field at a rapidly propagating plane-stress crack tip. Applying these generally analytical expressions to the concrete crack, we obtain the analytical expressions of perfectly plastic stress field at the rapidly propagating tips of models I and II plane-stress cracks.  相似文献   

9.
The viscosity of material is considered at propagating crack-tip. Under the assumption that the artificial viscosity coefficient is in inverse proportion to power law of the plastic strain rate, an elastic-viscoplastic asymptotic analysis is carried out for moving crack-tip fields in power-hardening materials under plane-strain condition. A continuous solution is obtained containing no discontinuities. The variations of numerical solution are discussed for mode I crack according to each parameter. It is shown that stress and strain both possess exponential singularity. The elasticity, plasticity and viscosity of material at crack-tip only can be matched reasonably under linear-hardening condition. And the tip field contains no elastic unloading zone for mode I crack. It approaches the limiting case, crack-tip is under ultra-viscose situation and energy accumulates, crack-tip begins to propagate under different compression situations.  相似文献   

10.
The viscosity of material is considered at propagating crack-tip. Under the assumption that the artificial viscosity coefficient is in inverse proportion to power law of the plastic strain rate, an elastic-viscoplastic asymptotic analysis is carried out for moving crack-tip fields in power-hardening materials under plane-strain condition. A continuous solution is obtained containing no discontinuities. The variations of numerical solution are discussed for mode Ⅰ crack according to each parameter. It is shown that stress and strain both possess exponential singularity. The elasticity, plasticity and viscosity of material at crack-tip only can be matched reasonably under linear-hardening condition. And the tip field contains no elastic unloading zone for mode Ⅰ crack. It approaches the limiting case, crack-tip is under ultra-viscose situation and energy accumulates, crack-tip begins to propagate under different compression situations.  相似文献   

11.
I型定常扩展裂纹尖端的弹黏塑性场   总被引:1,自引:1,他引:1  
Jia Bin  王振清  李永东 《力学学报》2005,37(4):421-427
考虑材料在扩展裂纹尖端的黏性效应,假设黏性系数与塑性应变率的幂次成反比,对幂硬化材料中平面应变扩展裂纹尖端场进行了弹黏塑性渐近分析,得到了不含间断的连续解,并讨论了I型裂纹数值解的性质随各参数的变化规律. 分析表明应力和应变均具有幂奇异性,并且只有在线性硬化时,尖端场的弹、黏、塑性才可以合理匹配. 对于I型裂纹,裂尖场不含弹性卸载区. 当裂纹扩展速度趋于零时,动态解趋于准静态解,表明准静态解是动态解的特殊形式;如果进一步考虑硬化系数为零的极限情况,便可退化为Hui和Riedel的非线性黏弹性解.  相似文献   

12.
Under the condition that any perfectly plastic stress components at a crack tip are nothing but the functions of 0 only making use of equilibrium equations. Hill anisotropic yield condition and unloading stress-strain relations, in this paper, we derive the general analytical expressions of anisotropic plastic stress fields at the slowly steady propagating tips of plane and anti-plane strain. Applying these general analytical expressions to the concrete cracks, the analytical expressions of anisotropic plastic stress fields at the-slowly steady propagating tips of Mode I and Mode III cracks are obtained. For the isotropic plastic material, the anisotropic plastic stress fields at a slowly propagating crack tip become the perfectly plastic stress fields.  相似文献   

13.
The elastic-viscoplastic model proposed in [1] is used in this paper to analyze the quasi-statically growing crack field and dynamic propagating crack-tip field of mode III. By analysis, we obtained more reasonable results than those of an elastic-plastic material. When the effect of rate sensitivity of a material is considered, it is found that only the quasi-statically growing crack-tip field is the special case of dynamic propagating crack-tip field when Mach numberM approaches zero.  相似文献   

14.
A new elastic-viscoplastic mode was proposed to analyze the stress and strain fields surrounding the tip of a propagating mode Ⅰ cracks. A proper displacement pattern was suggested and asymptotic equations were derived, and numerical solutions were illustrated. The analysis and calculation show that the crack-tip field is of logarithmic singularity for smaller viscosity, however no solution exists for large viscosity. By a careful analysis and comparison, it is found that the present results retain all merits of those given by Gao Yu-chen, while removing existing problems.  相似文献   

15.
Under the hypothesis that the stress components of crack-tip fields are only thefunctions ofθ,the differential equations of plane-stress crack-tip stress fields fororthotropic perfectly-plastic materials are obtained by using Hill’s yield condition andequilibrium equations.By combining the general analytical expression with the numericalmethod the crack-tip stress fields for orthotropic perfectly-plastic materials for plane stressare presented.  相似文献   

16.
The elastic-viscoplastic model proposed by Bingham was used to analyse the stress and strain surrounding the tip of a propagating crack under antiplane shear. The proper displacement pattern was given ; the asymptotic equations were derived and solved numerically. The analysis and calculation show that for smaller viscosity the crack-tip possesses logarthmic singularity, and for larger viscosity it possesses power-law singularity.In critical case, the two kinds of singularity are consistent with each other. The result revealed the important role of viscosity for crack-tip field.  相似文献   

17.
In this paper, a simplified brittle damage model is proposed according to the Mazarz-Lemaitre damage model for concrete. A closed-form solution for a mode III crack is obtained based on the simplified model under small scale damage conditions, which allows for discontinuities of displacement-gradient and tangential stress on the damage boundary. It is pointed out that the discontinuities of field variables near the tip region exist for the brittle damaged material induced by the softening effect of the material. The preoject supported by the National Natural Science Foundation of China  相似文献   

18.
Based on the plastic-dynamic equations, the asymptotic behaviour of the near-tip fields for a plane stress tensile crack propagating in a power-law material has been studied in this paper. It is shown that the stress and strain singularities are, respectively, of the order and , whereA is a constant which is related to the size of plastic region,r is the distance to the crack tip,n is the power-law exponent. Projects sponsored by the National Science Foundation.  相似文献   

19.
On condition that any perfectly plastic stress component at a crack tip is nothingbut the function ofθ.by making use of equilibrium equations,anisotropic plastic stress-strain-rate relations,compatibility equations and Hill anisotropic plastic yieldcondition,in the present paper,we derive the generally analytical expressions of theanisotropic plastic stress field at a mixed-mode crack tip under plane and anti-planestrain.Applying these generally analytical expressions to the mixed-mode cracks,wecan obtain the analytical expressions of anisotropic plastic stress fields at the tips ofmixed-modeⅠ-Ⅲ,Ⅱ-ⅢandⅠ-Ⅱ-Ⅲcracks.  相似文献   

20.
Dynamic effects are investigated for the steady-state fields of stress and deformation in the immediate vicinity of a rapidly propagating crack-tip in an elastic perfectly-plastic material. Both the cases of antiplane strain and in-plane strain have been considered. The governing equations in the plastic regions are hyperbolic in nature. Simple wave solutions together with uniform fields provide explicit asymptotic expressions for the stresses and the strains in the near-tip regions. The dynamic solutions describe a region of plastic loading which completely surrounds the propagating crack-tip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号