共查询到19条相似文献,搜索用时 62 毫秒
1.
本文讨论不等式约束优化问题,给出一个信赖域方法与SQP方法相结合的新的可行算法,算法中采用了压缩技术,使得QP子问题产生的搜索方向尽可能为可行方向,并且采用了高阶校正的方法来克服算法产生的Maratos效应现象.在适当的条件下,证明了算法的全局收敛性和超线性收敛性.数值结果表明算法是有效的. 相似文献
2.
3.
本文对线性不等式约束的非线性规划问题提出了一类信赖域算法,证明了算法所产生的序列的任一聚点为Kuhn-Tucker点,并讨论了子问题求解的有效集方法. 相似文献
4.
凸约束优化问题的带记忆模型信赖域算法 总被引:1,自引:0,他引:1
本文我们考虑求解凸约束优化问题的信赖域方法 .与传统的方法不同 ,我们信赖域子问题的逼近模型中包括过去迭代点的信息 ,该模型使我们可以从更全局的角度来求得信赖域试探步 ,从而避免了传统信赖域方法中试探步的求取完全依赖于当前点的信息而过于局部化的困难 .全局收敛性的获得是依靠非单调技术来保证的 相似文献
5.
设计了一个新的求解等式约束优化问题的非单调信赖域算法.该算法不需要罚函数也无需滤子.在每次迭代过程中只需求解满足下降条件的拟法向步及切向步.新算法产生的迭代步比滤子方法更易接受,计算量比单调算法小.在一般条件下,算法具有全局收敛性. 相似文献
6.
提出非线性等式和有界约束优化问题的结合非单调技术的仿射信赖域方法.
结合信赖域方法和内点回代线搜索技术, 每一步迭代转到由一般信赖域子问题产生的回代步中且满足严格内点可行条件.
在合理的假设条件下, 证明了算法的整体收敛性和局部超线性收敛速率.
最后, 数值结果表明了所提供的算法具有有效性. 相似文献
7.
凸约束优化的非单调信赖域算法的收敛性 总被引:1,自引:0,他引:1
本文对凸约束优化问题提出一类新的非单调信赖域算法,在二次模型Hesse矩阵{Bk}一致有界条件下,证明了算法具有强收敛性;在{Bk}线性增长的条件下,证明了算法具有弱收敛性;这推广了现有约束或凸约束优化问题的各种信赖域算法,改进了收敛性结果。 相似文献
8.
具不等式约束变分不等式的信赖域算法 总被引:1,自引:0,他引:1
1 引 言令X是Rn 中的非空闭凸集 ,F :X→Rn 是连续映射 ,〈· ,·〉表示Rn 中的内积 有限维变分不等式问题 (以下简称变分不等式问题 ,记为VIP或VI(X ,F) ) :就是求x ∈Rn,使x ∈X且 x ∈X ,〈F(x ) ,x -x 〉≥ 0 . ( 1 )在X =Rn+ 的特殊情形下 ,( 1 )变为非线性互补问题 (记为NCP或NCP(F) ) :就是求x ∈Rn,使x ≥ 0 ,F(x ) ≥ 0 ,且〈x ,F(x )〉 =0 . ( 2 ) 变分不等式长期以来一直用于阐述和研究经济学、控制论、交通运输等领域中出现的各种平衡模型 近二十年来 ,变分不等式及其… 相似文献
9.
本文提供修正近似信赖域类型路经三类预条件弧线路径方法解无约束最优化问题.使用对称矩阵的稳定Bunch-Parlett易于形成信赖域子问题的弧线路径,使用单位下三角矩阵作为最优路径和修正梯度路径的预条件因子.运用预条件因子改进Hessian矩阵特征值分布加速预条件共轭梯度路径收敛速度.基于沿着三类路径信赖域子问题产生试探步,将信赖域策略与非单调线搜索技术相结合作为新的回代步.理论分析证明在合理条件下所提供的算法是整体收敛性,并且具有局部超线性收敛速率,数值结果表明算法的有效性. 相似文献
10.
一类约束优化问题的非单调信赖域算法 总被引:1,自引:0,他引:1
本文就一类等式约束优化问题,结合当前比较流行的非单调技术,提出了一类新的求解等式约束优化的非单调信赖域算法.其非单调程度由算法自适应控制,计算预测下降量和实际下降量的比值时,采用前m(k)个点的信息,这不同于以前在计算预测下降量和实际下降量的比值时,仅仅采用当前-个点的信息.在没有正则性条件的假设下我们证明了算法是有定义的.并且通过对不同情况的讨论证明了算法的全局收敛性.基本的数值试验表明算法是有效的,且说明提出的非单调信赖域算法比单调信赖域算法有效. 相似文献
11.
Nonmonotonic trust region algorithm 总被引:24,自引:0,他引:24
A nonmonotonic trust region method for unconstrained optimization problems is presented. Although the method allows the sequence of values of the objective function to be nonmonotonic, convergence properties similar to those for the usual trust region method are proved under certain conditions, including conditions on the approximate solutions to the subproblem. To make the solution satisfy these conditions, an algorithm to solve the subproblem is also established. Finally, some numerical results are reported which show that the nonmonotonic trust region method is superior to the usual trust region method according to both the number of gradient evaluations and the number of function evaluations.The authors would like to thank Professor L. C. W. Dixon for his useful suggestions. 相似文献
12.
A trust region and affine scaling interior point method for nonconvex minimization with linear inequality constraints 总被引:12,自引:0,他引:12
A trust region and affine scaling interior point method (TRAM) is proposed for a general nonlinear minimization with linear
inequality constraints [8]. In the proposed approach, a Newton step is derived from the complementarity conditions. Based
on this Newton step, a trust region subproblem is formed, and the original objective function is monotonically decreased.
Explicit sufficient decrease conditions are proposed for satisfying the first order and second order necessary conditions.?The
objective of this paper is to establish global and local convergence properties of the proposed trust region and affine scaling
interior point method. It is shown that the proposed explicit decrease conditions are sufficient for satisfy complementarity,
dual feasibility and second order necessary conditions respectively. It is also established that a trust region solution is
asymptotically in the interior of the proposed trust region subproblem and a properly damped trust region step can achieve
quadratic convergence.
Received: January 29, 1999 / Accepted: November 22, 1999?Published online February 23, 2000 相似文献
13.
TongXiaojiao ZhouShuzi 《高校应用数学学报(英文版)》2000,15(2):201-210
Abstract. A trust region algorithm for equality constrained optimization is given in this paper.The algorithm does not enforce strict monotonicity of the merit function for every iteration.Global convergence of the algorithm is proved under the same conditions of usual trust regionmethod. 相似文献
14.
§1 IntroductionIn this paper we analyze an interior point scaling projected reduced Hessian methodwith trust region strategy for solving the nonlinear equality constrained optimizationproblem with nonnegative constraints on variables:min f(x)s.t. c(x) =0 (1.1)x≥0where f∶Rn→R is the smooth nonlinear function,notnecessarily convex and c(x)∶Rn→Rm(m≤n) is the vector nonlinear function.There are quite a few articles proposing localsequential quadratic programming reduced Hessian methods… 相似文献
15.
C.A Botsaris 《Journal of Mathematical Analysis and Applications》1979,71(2):482-515
An algorithm is presented that minimizes a continuously differentiable function in several variables subject to linear inequality constraints. At each step of the algorithm an arc is generated along which a move is performed until either a point yielding a sufficient descent in the function value is determined or a constraint boundary is encountered. The decision to delite a constraint from the list of active constraints is based upon periodic estimates of the Kuhn-Tucker multipliers. The curvilinear search paths are obtained by solving a linear approximation to the differential equation of the continuous steepest descent curve for the objective function on the equality constrained region defined by the constraints which are required to remain binding. If the Hessian matrix of the objective function has certain properties and if the constraint gradients are linearly independent, the sequence generated by the algorithm converges to a point satisfying the Kuhn-Tucker optimality conditions at a rate that is at least quadratic. 相似文献
16.
This paper presents a new trust region algorithm for solving a class of composite nonsmooth optimizations. It is distinguished by the fact that this method does not enforce strict monotonicity of the objective function values at successive iterates and that this method extends the existing results for this type of nonlinear optimization with smooth, or piecewise smooth, or convex objective functions or their composition. It is proved that this algorithm is globally convergent under certain conditions. Finally, some numerical results for several optimization problems are reported which show that the nonmonotonic trust region method is competitive with the usual trust region method. 相似文献
17.
ZhuDetong 《高校应用数学学报(英文版)》2004,19(4):459-473
This paper proposes a nonmonotonic backtracking trust region algorithm via bilevel linear programming for solving the general multicommodity minimal cost flow problems. Using the duality theory of the linear programming and convex theory, the generalized directional derivative of the general multicommodity minimal cost flow problems is derived. The global convergence and superlinear convergence rate of the proposed algorithm are established under some mild conditions. 相似文献
18.
给出了用共轭梯度法解信赖域子问题的重新开始策略,并证明了方法的收敛性,数值结果表明该策略可以大大提高算法的收敛速度. 相似文献
19.
Detong Zhu 《Frontiers of Mathematics in China》2006,1(4):620-628
In this paper, we propose a new trust-region-projected Hessian algorithm with nonmonotonic backtracking interior point technique
for linear constrained optimization. By performing the QR decomposition of an affine scaling equality constraint matrix, the
conducted subproblem in the algorithm is changed into the general trust-region subproblem defined by minimizing a quadratic
function subject only to an ellipsoidal constraint. By using both the trust-region strategy and the line-search technique,
each iteration switches to a backtracking interior point step generated by the trustregion subproblem. The global convergence
and fast local convergence rates for the proposed algorithm are established under some reasonable assumptions. A nonmonotonic
criterion is used to speed up the convergence in some ill-conditioned cases.
Selected from Journal of Shanghai Normal University (Natural Science), 2003, 32(4): 7–13 相似文献