首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activated carbon was chemically modified with ethyl-3-(2-aminoethylamino)-2-chlorobut-2-enoate to obtain a material for selective solid-phase extraction of trace Au(III), Pd(II) and Pt(IV) prior to their determination by inductively coupled plasma atomic emission spectrometry. Experimental conditions such as effects of pH, shaking time, sample flow rate and volume, elution and interfering ions were studied. The ions Au(III), Pd(II) and Pt(IV) can be quantitatively adsorbed on the new sorbent from solution of pH 1. The adsorbed ions were then eluted with 0.1 mol L?1 hydrochloric acid and containing 4% thiourea. Many common ions do not interfere. The adsorption capacity of the material is 305, 92, and 126 mg g?1 for Au(III), Pd(II) and Pt(IV), respectively, and the detection limits are 5, 11 and 9 ng mL?1. The relative standard deviation is less than 3.0% (n?=?8) under optimum conditions. The method was validated by analyzing two certified reference materials and successfully applied to the preconcentration and determination of these ions in actual samples with satisfactory results.
Figure
Activated carbon was chemically modified with ethyl-3-(2-aminoethylamino)-2-chlorobut-2-enoate to obtain a material for selective solid-phase extraction of trace Au(III), Pd(II) and Pt(IV) prior to their determination by inductively coupled plasma atomic emission spectrometry. Parameters affecting solid-phase extraction were systematically studied. This new adsorbent exhibited good characteristics for separation and preconcentration of Au(III), Pd(II) and Pt(IV) in aqueous solution, such as excellent selectivity, fast adsorption equilibrium, high tolerance limits of potentially interfering ions, high enrichment factor and low costs. It also shows relatively high adsorption capacity when compared to several other adsorbents. In addition, the synthetic method of the adsorbent was very simple.  相似文献   

2.
We introduce a rapid and sensitive approach to study the interactions of an affinity probe with the bacterial wall. Immunoglobulin was immobilized on platinum nanoparticles, and the resulting probe nanoparticles bind to bacterial walls as confirmed by transmission electron microscopy. A MALDI-MS assay was developed that can detect ~105 cfu mL?1 of S. marcescens and E. coli. This approach enables simple, rapid and straightforward detection of bacterial proteins, with high resolution and sensitivity, and without the requirement for tedious washing/separation steps.
Figure
Antobody IgG treated Pt NPs are successfully implemented to bind the cell surfaces of target bacteria. The current bio-analytical technique allows simple, rapid and straightforward identification of bacteria. The obtained results proved that IgG modified platinum nanoparticle strategy was also capable to enhance the protein peaks with high signal intensity and resolution.  相似文献   

3.
Geobacillus thermoleovorans subsp stromboliensis, was immobilized on an Amberlite XAD-4 ion exchanger and used as a solid phase extractant for the preconcentration of U(VI) ions prior to their determination by UV-VIS spectrophotometry. Parameters affecting the preconcentration (such as the pH value of the sample solution, the concentration of U(VI), the volume and type of eluent, the flow rate and the effect of potentially interfering ions) were studied. The optimum pH for the sorption of U(VI) was found to be pH 5.0. 5.0?mL of 1 M hydrochloric acid were used to eluate the U(VI) from the column. The loading capacity is 11?mg?g?1. The limits of detection and quantification are 2.7 and 9.0?μg?L?1, respectively, and relative standard deviations are <10?%. The method was applied to the determination of U(VI) in a certified reference sample (NCS ZC-73014; tea leaves) and in natural water samples.
Figure
Schematic presentation of SPE procedure using Geobacillus thermoleovorans subsp stromboliensis immobilized on an Amberlite XAD-4 as ion exchanger for preconcentration of U(VI) ions prior to their determination by UV-VIS spectrophotometry  相似文献   

4.
We have immobilized living and non-living Escherichia coli (E. coli) bacteria on multiwalled carbon nanotubes (MWCNT) and used such materials as a biosorbent for the separation and preconcentration of copper, cobalt, cadmium and nickel prior to their determination by flame atomic absorption spectrometry (FAAS). E. coli bacteria cells were mixed with MWCNTs in a 1:1 ratio, dried and placed at the tip of a 50-mL syringe. The ions were retained on the sorbent and then eluted by drawing and ejecting back the sample (or standard solution) and an eluent, respectively. The effects of various experimental parameters on the sorption and elution were investigated. The analytes were quantitatively retained (at pH values of 7) and eluted (with 0.5 M nitric acid) with high precision, the RSD being <5%. The performances of the new sorbents were compared using certified reference materials. The sorbent modified with living E. coli has a higher adsorption capacity and displays somewhat better recoveries compared to sorbent based on non-living E. coli. Both sorbents were successfully used for the separation and preconcentration of copper, cobalt, cadmium and nickel prior to their determination by flame atomic absorption spectrometry.
Figure
SEM photograph of (a) living E. coli immobilized on MWCNT and (b) non-living E. coli immobilized on MWCNT  相似文献   

5.
A new sorbent was prepared by immobilization of 2,6-diaminopyridine on activated carbon and then used as a solid-phase extractant for trace Au(III), Pd(II) and Pt(IV) before their determination by ICP-AES. Effects of pH, the shaking time, the sample flow rate and volume, the elution condition and the potentially interfering ions were investigated. The optimum pH value is 1. The maximum static adsorption capacity for the three ions is 202.7, 38.5 and 30.1?mg?g?1, respectively. The adsorbed metal ions can be completely eluted by 2?mL of the eluent solution that contains 0.05?mol?L?1 HCl and 5% thiourea. Common other ions do not interfere. The detection limits (3??) are 0.16, 0.33 and 0.29?ng?mL?1, respectively. The relative standard deviation (RSD) was lower than 3.0% (n?=?8). The new sorbent was applied to the preconcentration of the three ions in ore and rock samples with satisfactory results.
Figure
Au(III), Pd(II), Pt(IV) are absorbed at pH 1. The maximum static adsorption capacity is 202.7, 38.5 and 30.1?mg?g?1. The eluent is 2?mL of the eluent solution that contains 0.05?mol?L?1 HCl and 5% thiourea. The relative standard deviation (RSD) was lower than 3.0% (n?=?8).  相似文献   

6.
An ion-imprinted polymer (IIP) was obtained by copolymerization of methacrylic acid (as a functional monomer) and ethylene glycol dimethacrylate (as a crosslinking agent) in the presence of various chelators for Pt(II) ion and using 2,2??-azo-bis-isobutyronitrile as the initiator. Specifically, acetaldehyde thiosemicarbazone (AcTSn) and benzaldehyde thiosemicarbazone (BnTSn) were used as chelators. The IIPs were applied as sorbents for solid-phase extraction of Pt(II) and Pt(IV) ions from aqueous solutions. The effects of acidity and flow rate of the sample, of elution conditions and of potentially interfering ions were investigated. The imprinting effect of analyte is clearly demonstrated by the fact that only the IIP is capable of quantitative retention of Pt(II) and Pt(IV) ions. The method works best in the pH range from 0.5 to 1 and from 3.5 to 9.5. The ions can be recovered with an acidic solution of thiourea. The Pt-AcTSn polymer displays better sorption properties for the separation of analytes. The selectivity coefficients of the Pt-AcTSn and control polymers for Pt(IV) in the presence Pd(II), Rh(III), Ru(III), Al(III) and Cu(II) were calculated, and the sorbent capacity for Pt(IV) was found to be 4.56???g?g?-1. The method was successfully applied to the determination of Pt(IV) by electrothermal atomic absorption spectrometry in tap water, tunnel dust and anode slime samples.
Figure
The new ion imprinted polymers based on Pt(II)-thiosemicarbazone derivative chelates were prepared and used as solid phase extraction sorbent for selective separation of platinum. The method was successfully applied to the determination of analyte in environmental samples by electrothermal atomic absorption spectrometry  相似文献   

7.
We have developed a method for the determination of trace levels of total selenium in water samples. It integrates preconcentration, in-situ photoreduction and slurry photochemical vapor generation using TiO2 nanoparticles, and the determination of total selenium by AFS. The Se(IV) and Se(VI) species were adsorbed on a slurry of TiO2 nanoparticles which then were exposed to UV irradiation in the presence of formic acid to form volatile selenium species. The detection limits were improved 17-fold compared to hydride generation and 56-fold compared to photochemical vapor generation, both without any preconcentration. No significant difference was found in the limits of detection (LODs) for Se(IV) and Se(VI). The LOD is as low as 0.8 ng L?1, the precision is better than 4.5 % (at a level of 0.1 μg L?1 of selenium). The method gave good recoveries when applied to the determination of total selenium in a certified tissue reference material (DORM-3) and in spiked drinking water and wastewater samples containing high concentrations of transition and noble metal ions. It also excels by very low LODs, a significant enhancement of sample throughput, reduced reagent consumption and sample loss, and minimal interference by transition and noble metal ions.
Figure
A method integrating pre-concentration, in situ photo-reduction and slurry photochemical vapor generation by using TiO2 nanoparticles was developed for sensitive determination of total selenium in various water samples by atomic fluorescence spectrometry.  相似文献   

8.
A method using on-line solid-phase microextraction (SPME) on a carbowax-templated fiber followed by liquid chromatography (LC) with ultraviolet (UV) detection was developed for the determination of triclosan in environmental water samples. Along with triclosan, other selected phenolic compounds, bisphenol A, and acidic pharmaceuticals were studied. Previous SPME/LC or stir-bar sorptive extraction/LC-UV for polar analytes showed lack of sensitivity. In this study, the calculated octanol–water distribution coefficient (log D) values of the target analytes at different pH values were used to estimate polarity of the analytes. The lack of sensitivity observed in earlier studies is identified as a lack of desorption by strong polar–polar interactions between analyte and solid-phase. Calculated log D values were useful to understand or predict the interaction between analyte and solid phase. Under the optimized conditions, the method detection limit of selected analytes by using on-line SPME-LC-UV method ranged from 5 to 33 ng?L?1, except for very polar 3-chlorophenol and 2,4-dichlorophenol which was obscured in wastewater samples by an interfering substance. This level of detection represented a remarkable improvement over the conventional existing methods. The on-line SPME-LC-UV method, which did not require derivatization of analytes, was applied to the determination of TCS including phenolic compounds and acidic pharmaceuticals in tap water and river water and municipal wastewater samples.
Figure
Schematic diagram of the On-line solid-phase microextraction  相似文献   

9.
A method is presented for matrix separation, preconcentration and determination by hydride generation atomic fluorescence spectrometry of trace amounts of Se(IV). It is based on solidified floating drops of 1-undecanol that are capable of extracting the target analyte after chelation with a water soluble ligand and subsequent ultrasound-assisted back-extraction into a aqueous solution. Hydride generation was then accomplished by reaction with a solution of sodium borohydride. Under optimized conditions, an enrichment factor of 15 and a linear calibration plot in the range from 0.01 to 5.0 μg L?1 were achieved using a 10.0 mL sample. The detection limit (3σ) is 7.0 ng L?1, and the relative standard deviation (RSD) is 2.1% at 1.0 μg L?1 (n?=?11). The method was applied to determination of Se(IV) in different real water samples through recovery experiments and subsequently validated against two certified reference materials.
A solidified floating organic drop microextraction coupled with hydride generation atomic fluorescence spectrometry for the determination of Se(IV) is described.  相似文献   

10.
We have used a nano-structured nickel-aluminum layered double hydroxide (Ni-Al LDH) for the extraction of trace levels of selenium prior to its determination by continuous-flow hydride generation atomic absorption spectrometry. Extraction is based on the adsorption of Se(IV) anions on the Ni-Al-nitrate LDH, and/or their exchange with the nitrate anions in the LDH interlayer. The effects of pH value, amount of nanosorbent, eluent type and concentration, sample volume and flow rate were optimized. No appreciable matrix effects were observed. Under optimum conditions, the limit of detection (defined as three times the standard deviation of the blank signal divided by the slope of the calibration plot) is 10 pg?mL?1, and the relative standard deviation is 2.8 %. The sorption capacity and preconcentration factor are 10 mg?g?1 and 33, respectively. The method was successfully applied to the determination of Se(IV) in tap water, river water, well water, wastewater and oyster tissue (certified reference material, CRM 1566b).
Figure
Effect of NaOH concentration on elution of the retained Se(IV) ions from solid phase extraction column containing nickel-aluminum-nitrate layered double hydroxide nano-sorbent is shown. Combination of the sample preparation procedure with continuous flow hydride generation AAS exhibited excellent selectivity and sensitivity that could be exploited in determination of Se(IV) in various complicated matrices.  相似文献   

11.
We have developed an enzymatic glucose biosensor that is based on a flat platinum electrode which was covered with electrophoretically deposited rhodium (Rh) nanoparticles and then sintered to form a large surface area. The biosensor was obtained by depositing glucose oxidase (GOx), Nafion, and gold nanoparticles (AuNPs) on the Rh electrode. The electrical potential and the fractions of Nafion and GOx were optimized. The resulting biosensor has a very high sensitivity (68.1 μA mM?1 cm?2) and good linearity in the range from 0.05 to 15 mM (r?=?0.989). The limit of detection is as low as 0.03 mM (at an SNR of 3). The glucose biosensor also is quite selective and is not interfered by electroactive substances including ascorbic acid, uric acid and acetaminophen. The lifespan is up to 90 days. It was applied to the determination of glucose in blood serum, and the results compare very well with those obtained with a clinical analyzer.
Figure
An enzymatic glucose biosensor was prepared based on rhodium nanoparticle modified Pt electrode and glucose oxidase immobilized in gold nanoparticles and Nafion composite film. The electrode showed a good response to glucose. The sensor was applied to the determination of glucose in blood serum.  相似文献   

12.
We show that the addition of white dextrin during the electrochemical deposition of platinum nanostructures (nano-Pt) on a glassy carbon electrode (GCE) results in an electrochemically active surface that is much larger than that of platinum microparticles prepared by the same procedure but in the absence of dextrin. The nano-Pt deposits are characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy, and electrochemical methods. The SEM images reveal deposits composed of mainly nanoparticles and short nanorods. The GCE was applied as a novel and cost-effective catalyst for methanol oxidation. The use of nano-Pt improves the electrocatalytic activity and the stability of the electrodes.
Figure
(A) SEM image of the Pt nanostructures. (B) Electrochemical responses of the Pt nanostructures (solid line) and Pt microparticles (line) in 1.4 M CH3OH + 0.5 M H2SO4 solution at υ?=?50 mV s?1. Novel Pt nanostructures were electrodeposited at the surface of glassy carbon electrode in the presence of white dextrin as an additive, which exhibit high electrocatalytic activity towards methanol oxidation due to their highly electrochemically active surface area.  相似文献   

13.
This article highlights recent methodological developments in the on-line concentration and separation of amino acids and their enantiomers using capillary electrophoresis. Sections are dedicated to recent contributions to on-line concentration strategies such as field-amplified sample stacking, large-volume sample stacking, dynamic pH junction, transient isotachophoresis, sweeping, and the combination of two methods. The main applications, advantages, and limitations of these procedures in the biological, food, and pharmaceutical fields are addressed. Comprehensive tables listing on-line techniques for the concentration and separation of amino acids and their enantiomers, categorized by the stacking strategies used, background electrolytes, sample matrix, limit of detection, and enhancement factor, are provided.
Figure
Capillary electrophoretic preconcentration techniques for amino acids analysis  相似文献   

14.
Zhao  Fangyuan  Wang  Fei  Zhao  Weining  Zhou  Jing  Liu  Yang  Zou  Lina  Ye  Baoxian 《Mikrochimica acta》2011,173(3-4):383-389
A facile, one-step and template-free method has been developed for the electrodeposition of well-dispersed platinum nanoparticles (Pt-NPs) on a glassy carbon electrode. The effects of various inorganic anions and overpotential on the morphologies and dimensions of the final products were investigated. The resulting Pt-NPs show high electrocatalytic activity towards methanol oxidation and are less easily poisoned by carbon monoxide.
Figure
In this study, we have developed a simple, environmentally benign, controllable, and template-free method for the electrodeposition of monodispersed Pt NPs on a glassy carbon electrode. The resulting Pt NPs display high catalytic activity towards methanol oxidation, and are less easily poisoned by carbon monoxide.  相似文献   

15.
We have developed a fibre optic biosensor with incorporated magnetic microparticles for the determination of biogenic amines. The enzyme diamine oxidase from Pisum sativum was immobilized either on chitosan-coated magnetic microparticles or on commercial microbeads modified with a ferrofluid. Both the immobilized enzyme and the ruthenium complex were incorporated into a UV-cured inorganic–organic polymer composite and deposited on a lens that was connected, by optical fibres, to an electro-optical detector. The enzyme catalyzes the oxidation of amines under consumption of oxygen. The latter was determined by measuring the quenched fluorescence lifetime of the ruthenium complex. The limits of detection for the biogenic amines putrescine and cadaverine are 25–30 μmol?L?1, and responses are linear up to a concentration of 1 mmol L?1.
Figure
Response (fluorescence lifetime) of a novel optical biosensor for biogenic amines (putrescine, cadaverine) determination based on Pisum sativum diamine oxidase immobilized on magnetically responsive chitosan microparticles with entrapped magnetite encapsulated in inorganic–organic polymer ORMOCER® together with ruthenium complex.  相似文献   

16.
This work presents a sensitive method for the determination of formaldehyde. It is based on the use of modified alumina nanoparticles for its preconcentration, this followed by a new and simple catalytic kinetic method for its determination. Alumina nanoparticles were chemically modified by immobilization of 2,4-dinitrophenylhydrazine via sodium dodecyl sulfate as a surfactant. The formaldehyde retained on the modified adsorbent was then desorbed and determined via its catalytic effect on the oxidation of thionine by bromate ion. Factors affecting the preconcentration and determination of formaldehyde have been investigated. Formaldehyde can be detected in the range from 0.05 to 38.75 μg L?1, and no serious interferences have been observed. The method has been successfully applied to the quantitation of formaldehyde in water, food, and certain biological samples.
Figure
Schematic representation of the grafting 2,4-dinitrophenylhydrazine on the SDS coated alumina nanoparticles for the preconcentration and determination of formaldehyde based on its catalytic effect on oxidation reaction of thionine by bromated ions. This method can be used to the determination of formaldehyde in different real samples.  相似文献   

17.
We have developed a highly sensitive microextraction method for the preconcentration of some phthalate esters such as diethyl phthalate, di-n-propylphthalate, di-n-butyl-phthalate, dicyclohexyl-phthalate, and diethyl-hexyl phthalate prior to their determination by HPLC. It is based on a magnetic graphene nanocomposite as an effective adsorbent. The effects of the amount of the extractant composite employed, extraction time, pH values, salt concentration and desorption conditions were investigated. Under the optimum conditions, the enrichment factors range from 1574 to 2880. Response is linear in the concentration range from 0.1 to 50?ng?mL?1. The limits of detection (at S/N?=?3) were between 0.01 and 0.04?ng?mL?1. The method was successfully applied to the determination of five phthalate esters in water and beverage samples.
A novel microextraction method was developed by using magnetic graphene nanocomposite as an effective adsorbent for the preconcentration of some trace phthalate esters in water and beverage samples followed by high performance liquid chromatography with ultraviolet detection. The enrichment factors of the method for the compouds were achieved ranging from 1574 to 2880.  相似文献   

18.
We report on a glassy carbon electrode (GCE) modified with a lead ionophore and multiwalled carbon nanotubes. It can be applied to square wave anodic stripping voltammetric determination of Pb(II) ion after preconcentration of Pb(II) at ?1.0?V (vs. SCE) for 300?s in pH?4.5 acetate buffer containing 400?μg?L?1 of Bi(III). The ionophore-MWCNTs film on the GCE possesses strong and highly selective affinity for Pb(II) as confirmed by quartz crystal microbalance experiments. Under the optimum conditions, a linear response was observed for Pb(II) ion in the range from 0.3 to 50?μg?L?1. The limit of detection (at S/N?=?3) is 0.1?μg?L?1. The method was applied to the determination of Pb(II) in water samples with acceptable recovery.
Figure
A glassy carbon electrode modified with a lead ionophore and multiwalled carbon nanotubes is successfully applied to sensitive and selective square wave anodic stripping voltammetric determination of Pb(II) ion after preconcentration of Pb(II) at ?1.0?V (vs. SCE) in pH?4.5 solutions containing 400?μg?L?1 of Bi(III).  相似文献   

19.
A reagentless d-sorbitol biosensor based on NAD-dependent d-sorbitol dehydrogenase (DSDH) immobilized in a sol–gel carbon nanotubes–poly(methylene green) composite has been developed. It was prepared by durably immobilizing the NAD+ cofactor with DSDH in a sol–gel thin film on the surface of carbon nanotubes functionalized with poly(methylene green). This device enables selective determination of d-sorbitol at 0.2 V with a sensitivity of 8.7?μA?mmol?1?L?cm?2 and a detection limit of 0.11 mmol?L?1. Moreover, this biosensor has excellent operational stability upon continuous use in hydrodynamic conditions.
Figure
Reagentless D-sorbitol biosensor based on NAD-dependent D-sorbitol dehydrogenase (DSDH) immobilized in sol-gel/carbon nanotubes/poly(methylene green) composite  相似文献   

20.
Multiwalled carbon nanotubes were grafted with tris(2-aminoethyl)amine (MWCNTs-TAA) and employed for solid phase extraction and preconcentration of trace lead ions prior to its determination by inductively coupled plasma optical emission spectrometry. The material was characterized by FT-IR and Raman spectroscopy, thermosgravimetric and elemental analysis. The effects of pH value, shaking time, sample volume, elution conditions and potentially interfering ions were investigated. Under the optimum conditions, the maximum adsorption capacity is 38?mg?g?1 of Pb(II), the detection limit is 0.32?ng?mL?1, the enrichment factor is 60, and the relative standard deviation is 3.5% (n?=?6). The method has been applied to the preconcentration of trace amounts of Pb(II) in environmental water samples with satisfactory results.
Figure
Oxidized multiwalled carbon nanotubes grafted with tris(2-aminoethyl)amine (MWCNTs-TAA) is prepared and employed as solid phase extraction sorbent to determinate the trace Pb(II) in water samples. The method has been applied to the preconcentration of trace amount of Pb(II) in water samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号