首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Wholly aromatic, thermotropic homopolyesters, derived from 4,4′-biphenol, substituted biphenols, or 1,1′-binaphthyl-4,4′-diol and 3,4′-benzophenone dicarboxylic acid, and two copolyesters, each of which contained 30 mol % of 6-hydroxy-2-naphthoic acid, were prepared by acidolysis polycondensation reactions and characterized for their liquid crystalline properties. The solubility behavior of these polymers has also been investigated. The two homopolymers of phenyl-substituted biphenols with 3,4′-benzophenone dicarboxylic acid were soluble in many common organic solvents. All of the homopolymers had lower Tm/Tf values than those with terephthalic acid, which was attributed to the incorporation of the asymmetric 3,4′-benzophenone dicarboxylate units in a head-to-head and head-to-tail fashion along the polyester chain. Two copolymers had lower Tm values than those of the respective homopolymers, as expected. They formed nematic phases which persisted up to 400°C, except those of phenyl-substituted biphenols with 3,4′-benzophenone dicarboxylic acid. Each of these two polymers also exhibited an accessible Ti transition, and had a broad range of LC phase. They had glass transition temperatures, Tg, in the range of 139-209°C and high thermal stabilities in the temperature range of 465-511°C. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
A series of new wholly aromatic polyesters was synthesized by melt polycondensation of 1-phenyl-2,6-naphthalenedicarboxylic acid (PNDA) and diacetates of various aromatic diols. The aromatic diols studied are hydroquinone (HQ), methylhydroquinone (MHQ), phenylhydroquinone (PHQ), (α-phenylisopropyl)hydroquinone (PIHQ), 2,6-naphthalenediol (2,6-ND), 1,4-naphthalenediol (1,4-ND), and 4,4′-biphenol (BP). These polyesters were characterized for their crystallinity, glass transition temperature (Tg), melting temperature (Tm), liquid crystallinity, and thermal stability. In general, crystallinity of the polyesters are very low and the Tg values of the polyesters range from 150 to 172°C depending on the structure of aromatic diols. All of the polymers formed nematic phases above their Tm or Tg. The polyesters derived from PHQ and PIHQ are soluble in chlorinated hydrocarbon solvents. The initial decomposition temperatures of the polyesters are above 400°C under N2 atmosphere. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
A series of fully aromatic, thermotropic polyesters, derived from 3-phenyl-4,4′-biphenol (MPBP), nonlinear 4,4′-benzophenone dicarboxylic acid (4,4′-BDA), and various other comonomers was prepared by the melt polycondensation method and characterized for their thermotropic liquid crystalline behavior by a variety of experimental techniques. The homopolymer of MPBP with 4,4′-BDA had a fusion temperature (Tf) at 240°C, exhibited a nematic liquid crystalline phase, and had a narrow liquid crystalline range of 60°C. All of the copolyesters of MPBP with 4,4′-BDA and either 30 mol % 4-hydroxybenzoic acid (HBA), 6-hydroxy-2-naphthoic acid (HNA) or 50 mol % terephthalic acid (TA), 2,6-naphthale-nedicarboxylic acid (2,6-NDA) and low Tf values in the range of 210–230°C, exhibited a nematic phase, and had accessible isotropization transitions (Ti) in the range of 320–420°C, respectively. As expected, each of them had a broader range of liquid crystalline phase than the homopolymer. They had a “frozen” nematic, glassy order as determined with the wide-angle X-ray diffraction (WAXD) studies. The morphology of each of the “as-made” polyesters had a fibrous structure as determined with the scanning electron microscopy (SEM), which arises because of the liquid crystalline domains. Moreover, they had higher glass transition temperatures (Tg) in the range of 167–190°C than those of other liquid crystalline polyesters, and excellent thermal stabilities (Td) in the range of 500–533°C, respectively. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
A series of fully aromatic, thermotropic polyesters, derived from 3,4′-dihydroxybenzophenone and various aromatic dicarboxylic acids, was prepared by the high-temperature solution polycondensation method and examined for thermotropic behavior by a variety of experimental techniques. The aromatic dicarboxylic acids used in this study were 2,6-naphthalenedicarboxylic acid, 4,4′-bibenzoic acid, and terephthalic acid. The two homopolymers of 3,4′-DHB with either 2,6-NDA or 4,4′-BBA formed nematic LC phases at 285°C and 255°C and also exhibited isotropization transitions (Ti) at 317°C and 339°C, respectively. The copolymer of 3,4′-DHB with 50% TA and 50% 2,6-NDA also formed a nematic LC phase and had a broader range of LC phase than that of its respective homopolymers. Two other copolymers of 3,4′-DHB, both containing 50% 4,4′-BBA, also formed nematic LC phases at low Tf values. All of the thermotropic polyesters had high thermal stabilities. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
A series of wholly aromatic, thermotropic polyesters, derived from 3,3′-bis(phenyl)-4,4′-biphenol (DPBP), nonlinear 4,4′-benzophenone dicarboxylic acid (4,4′-BDA), and various linear comonomers, were prepared by the melt polycondensation reaction and characterized for their thermotropic properties by a variety of experimental techniques. The homopolymer of DPBP with 4,4′-BDA had a fusion temperature (Tf) at 265°C, exhibited a nematic phase, and had a liquid crystalline range of 105°C. All of the copolyesters of DPBP with 4,4′-BDA and either 30 mol % 4-hydroxybenzoic acid (HBA), 6-hydroxy-2-naphthoic acid (HNA), or 50 mol % terephthalic acid (TA), 2,6-naphthalenedicarboxylic acid (2,6-NDA) had low Tf values in the range of 220–285°C, exhibited a nematic phase, and had accessible isotropization transitions (Ti) in the range of 270–420°C, respectively. Their accessible Ti values would enable one to observe a biphase structure. Each of the copolymers with HBA or HNA had a much broader range of liquid crystalline phase. In contrast, each of the copolymers with TA or 2,6-NDA had a relatively narrow range of liquid crystalline phase. Each of these polyesters had a glassy, nematic morphology that was confirmed with the DSC, PLM, WAXD, and SEM studies. As expected, they had higher glass transition temperatures (Tg) in the range of 161–217°C than those of other liquid crystalline polyesters, and excellent thermal stabilities (Td) in the range of 494–517°C, respectively. Despite their noncrystallinity, they were not soluble in common organic solvents with the exception that the homopolymer and its copolymer with TA had limited solubility in CHCl3. However, they were soluble in the usual mixture of p-chlorophenol/1,1,2,2-tetrachloroethane (60/40 by weight) with the exception of the copolymer with 2,6-NDA. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 769–785, 1997  相似文献   

6.
A series of fully aromatic, thermotropic polyesters based on 1,1′-binaphthyl-4,4′-diol, BND, was prepared by the melt polycondensation method and characterized for their thermotropic behavior by a variety of experimental techniques. The homopolymer of BND with terephthalic acid formed a nematic melt at 353°C. In contrast, the polyester from BND and 2,6-naphthalenedicarboxylic acid had a melting transition, Tm, above 400°C, so it was not possible with the equipment available to determine whether it formed a nematic melt. All of the copolymers of BND formed nematic melts at much lower Tm values than those of its respective homopolymers, as expected, because of the copolymerization effect of the added monomer. Moreover, all of the copolymers had higher glass transition temperatures, Tg, than those of other liquid crystalline polyesters and higher thermal stabilities. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
A series of fully aromatic thermotropic polyesters based on mono-, di-, and tetra-substituted biphenols was prepared by the melt polycondensation method and examined for their thermotropic behavior by a variety of experimental techniques. The homopolyesters obtained from substituted biphenols containing either one phenyl or two phenyl groups as substituent(s) and TA formed nematic melts, but the homopolymers of the substituted biphenols containing either four sec-butyl groups or two tert-butyl groups with TA had melting transitions, Tm, above 400°C. Thus, it was not possible to determine whether they formed nematic melts. On copolymerization with 30 mol % HBA most of the resulting copolyesters had much lower Tm values, compared to those of respective homopolyesters, and the copolymers of the biphenol monomer containing the tert-butyl groups formed a nematic melt at an observable temperature. However, the copolymer of the biphenol with sec-butyl groups still had a Tm above 400°C. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
Two series of new wholly aromatic thermotropic copolyesters containing the 2‐(α‐phenylisopropyl)hydroquinone (PIHQ) moiety have been synthesized and their basic properties such as glass transition temperature (Tg), melting temperature (Tm), thermal stability, crystallinity, and liquid crystallinity were studied by differential scanning calorimetry (DSC), thermogravimetry (TG), and wide‐angle X‐ray diffractometry (WAXD) and on a polarizing microscope. The first series was prepared from acetylated PIHQ, terephthalic acid (TPA), and 2,6‐naphthalenedicarboxylic acid (NDA), and the second series from acetylated PIHQ, TPA, and 1,1′‐biphenyl‐4,4′‐dicarboxylic acid (BDA). The Tg values (152–168°C) of the two series are not much different, although the values for the first series appear slightly higher. The Tm values (287–378°C) and the degree of crystallinity of the first series are appreciably greater than those of the second series. Such differences can be explained by the geometric structure of NDA and BDA moieties. All of the present polyesters are thermotropic and nematic. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 881–889, 1999  相似文献   

9.
A series of aromatic polyesters were prepared from 2-bromoterephthalic acid and naphthalenediol isomers. Only the polymers obtained from 1,4-, and 1,5- and 2,6-naphthalenediols were thermotropic nematogens and those from bent naphthalenediols were not liquid crystalline. Only the polyesters derived from 1,4-, 1,5-, and 2,6-naphthalenediols were semicrystalline. The melting temperatures ranged from 319 to 374°C depending on the structure of naphthalenediol moiety. The glass transition temperature, Tg, ranged from 95 to 168°C. TGA studied revealed that the polyesters have fairly good thermal stability  相似文献   

10.
The degree of crystallinity of as-made fully aromatic, thermotropic polyesters was determined for two different series of polymers, each of which contained a symmetric monomer having either pendant phenyl groups or fused aromatic rings by the WAXD technique. All of the homopolymers had a high degree of crystallinity in spite of bulky substituents attached to the mesogenic moiety. Surprisingly, the homopolymer of 2,6-naphthalenedicarboxylic acid with each of the monomers had a higher degree of crystallinity and Tm than those of the homopolymer of terephthalic acid with each of the respective monomers. As expected, on copolymerization with 30 mol % of either 4-hydroxybenzoic acid or 6-hydroxy-2-naphthoic acid, all of the resulting copolymers had a much lower degree of crystallinity and Tm/Tf values compared to those of the respective homopolymers in each series. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
Random poly(hexamethylene terephthalate‐co‐galactarate)s and poly(dodecamethylene terephthalate‐co‐galactarate)s copolyesters covering the whole range of compositions were obtained with weight‐average molecular weights of ~30,000–50,000 g mol?1 by melt polycondensation. They were thermally stable above 300 °C, and displayed Tg in the +20 to ?20 °C range with values steadily decreasing with the content in galactarate units. All the copolyesters were semicrystalline with Tm between 50 and 150 °C and those made from dodecanediol were able to crystallize from the melt at a crystallization rate depending on composition. Copolyesters containing up to 50% of galactaric units retained the crystal structure of their respective polyterephthalate homopolyesters, whereas they adopted the structure of the respective polygalactarates when the content in Galx units reached 70%. Stress‐strain essays revealed decay in the mechanical parameters as the aromatic units were replaced by Galx. Incubation in aqueous buffer revealed that hydrolysis of the polyesters were largely enhanced by copolymerization and evidenced the capacity of the Galx unit for making aromatic polyesters susceptible to biodegradation. A detailed NMR analysis complemented by SEM observations indicated that hydrolysis took place by preferred splitting of galactarate ester bonds with releasing of alkanediol and Galx‐diacid. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
A series of new polyamides containing both sulfone and oxyethylene moieties in the polymer chain was prepared by the direct polycondensation of the diamine monomer 2,2‐bis[4‐[2‐(4‐aminophenoxy)ethoxy]phenyl]sulfone (BAEPS) and various aromatic dicarboxylic acids in N‐methyl‐2‐pyrrolidinone (NMP) using triphenyl phosphite and pyridine as condensing agents. Polymers were produced with inherent viscosities of 0.30–0.60 dl/g and identified by elemental analysis, and infrared and nuclear magnetic resonance spectra. Most of the polymers were readily dissolved in polar solvents such as NMP, dimethylsulfoxide, N,N‐dimethylacetamide, N,N‐dimethylformamide and m‐cresol at room temperature. Polymers containing rigid and symmetric p‐phenylene, naphthalene and p‐biphenylene moieties revealed a crystalline nature and showed no solubility in organic solvents. These polyamides had 10% weight loss temperatures ranging between 423 and 465 °C in nitrogen atmosphere and glass transition temperatures between 170 and 305 °C. The polymers with crystallinity nature exhibited melting endotherms (Tm) below 386 °C in differential scanning calorimetry trace. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
A series of thermotropic polyesters, derived from 4,4′‐biphenol (BP), 3‐phenyl‐4,4′‐biphenol (MPBP), and 3,3′‐bis(phenyl)‐4,4′‐biphenol (DPBP), 4,4′‐oxybisbenzoic acid (4,4′‐OBBA), and other aromatic dicarboxylic acids as comonomers, were prepared by melt polycondensation and were characterized for their thermotropic liquid‐crystalline (LC) properties with a variety of experimental techniques. The homopolymer of BP with 4,4′‐OBBA and its copolymers with either 50 mol % terephthalic acid or 2,6‐naphthalenedicarboxylic acid had relatively high values of the crystal‐to‐nematic transition (448–460 °C), above which each of them formed a nematic LC phase. In contrast, the homopolymers of MPBP and DPBP had low fusion temperatures and low isotropization temperatures and formed nematic melts above the fusion temperatures. Each of these two polymers also exhibited two glass‐transition temperatures, which were associated with vitrified noncrystalline (amorphous) regions and vitrified LC domains, as obtained directly from melt polycondensation. As expected, they had higher glass‐transition temperatures (176–211 °C) than other LC polyesters and had excellent thermal stability (516–567 °C). The fluorescence properties of the homopolymer of DPBP with 4,4′‐OBBA, which was soluble in common organic solvents such as chloroform and tetrahydrofuran, were also included in this study. For example, it had an absorption spectrum (λmax = 259 and 292 nm), an excitation spectrum (λex = 258 and 292 nm with monitoring at 350 nm), and an emission spectrum (λem = 378 nm with excitation at 330 nm) in chloroform. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 141–155, 2002  相似文献   

14.
The polymerization behavior of N-(p-aminobenzoyl)caprolactam was studied. It was found that polymerization could proceed by either elimination of caprolactam or by ring opening. Polymers prepared at temperatures above 200°C showed a greater tendency for ring opening to produce alternating aromatic/aliphatic copolymers than did polymers prepared at lower temperatures. Block copolymers of poly(p-benzamide) and nylon 6 were prepared by a two-stage hydrolytic polymerization process or by anionic polymerization at temperatures > 200°C. Polymer microstructures were determined using 13C-NMR spectroscopy by comparison with homopolymers and model alternating copolymers. The alternating copolymer prepared by condensation of N-(p-aminobenzoyl)-6-caproic acid showed a melting transition at 300–305°C in the DSC and a Tg in subsequent heating cycles of 116–119°C. Copolymers made with the two-stage process were rich in p-benzamide sequences and showed no Tg or Tm below 400°C. Copolymer made with NaH was rich in nylon 6 units, showed a Tm of 175–180°C and a Tg of 80–81°C, and was homogeneous in both the melt and solid.  相似文献   

15.
A new series of 16 aramids and 16 polyarylates having perfluoro-substituents on the benzene ring was prepared by a low temperature solution or an interfacial polycondensation. The effects of fluorine substituents on the structure and properties of polymers were examined. Fluorinated aramids exhibited higher crystallinity, while fluorinated polyarylates show lower crystallinity. The melting point (Tm) of aramids decreased with fluorine substitution, whereas Tm of polyarylates from fluorinated aromatic diols was higher than that of those from unfluorinated ones. The temperature of 10% weight loss and the residue at 900°C decreased with fluorine substitution except for the aramids from fluorinated diamines. Solubility and contact angle also increased with fluorine substitution. Some polyarylates were found to exhibit an optical anisotropy.  相似文献   

16.
Two isomers of commercial 4,4′-(4,4′-isopropylidenediphenoxy) bis(phthalic anhydride) (4,4′-BPADA), that is, 3,4′-(4,4′-isopropylidenediphenoxy) bis(phthalic anhydride) (3,4′-BPADA) and 3,3′-(4,4′-isopropylidenediphenoxy) bis(phthalic anhydride) (3,3′-BPADA), were synthesized through aromatic nucleophilic substitution from nitrophthalonitrile and bisphenol A. 3,4′-BPADA was first synthesized from two intermediates, that is, 3-(4-[4-hydroxyphenylisopropylidene] phenoxy) phthalonitrile (3-BPADN) and 3,4′-(4,4′-isopropylidenediphenoxy) bis(phthalonitrile) (3,4′-BPATN). The corresponding three series of polyetherimides (PEIs) were prepared with two representative aromatic diamines (4,4′-oxydianiline and m-phenylenediamine (m-PDA)) via two-step procedure and chemical imidization. Isomeric polyimides showed Tgs from 206 to 256°C in nitrogen and Td5%s from 488 to 511°C in argon, good mechanical properties (tensile moduli of 2.3–3.3 GPa, tensile strengths of 70–96 MPa, and elongations at break of 3.2%–5.1%), and good solubility. With the introduction of 3-substituted phthalimide unit, PEIs displayed higher Tg values, lower strengths and elongations, better solubility and larger d-spacings. The rheological properties of thermoplastic polyimide resins based on the BPADA isomers were investigated, which showed that polyetherimide PEI-3b derived from 3,3′-BPADA and m-PDA had the lowest melt viscosity among the isomers, indicating that the melt processibility had been greatly improved.  相似文献   

17.
Three new series of thermotropic aromatic main-chain polymers were synthesized and studied by differential scanning calorimetry and hot-stage polarized microscopy. The polymers were random copolyesters of p-hydroxybenzoic acid (from 60 to 10 mol %), catechol (from 20 to 45 mol %), and one of the following dicarboxylic diacids: terephthalic acid (series 1 ), 2,6-naphtalenedicarboxylic acid (series 2 ), and 1,2-bis-p-carboxyphenoxy ethane (series 3 ). Copolyesters with more than 25 mol % catechol in their structures were soluble in common organic solvents such as chloroform. All the synthesized copolyesters showed hysteresis of the heat capacity at the mesophase glass transition region and nematic mesophases above their Tg's which were stable over very broad ranges of temperature. Copolyesters containing the 2,6-naphtylenedioyl group showed the most stable nematic phases due to the increased anisometry of the 2,6-naphtylenedioyl unit compared to that of the therephthaloyl or the 4-oxybenzoyl units. © 1992 John Wiley & Sons, Inc.  相似文献   

18.
A new aromatic dicarboxylic acid, 1,4-bis (p-carboxyphenoxy)naphthyl ( 3 ), was synthesized by the reaction of p-fluorobenzonitrile with 1,4-naphthalenediol, followed by hydrolysis. Aromatic polyamides having inherent viscosities of 1.27–2.22 dL/g were prepared by the triphenyl phosphite activated polycondensation of diacid 3 with various aromatic diamines. Most of the resulting polymers showed an amorphous nature and were readily soluble in a variety of organic solvents including N,N-dimethyl-acetamide (DMAc), N-methyl-2-pyrrolidone (NMP), and m-cresol. Transparent, tough, and flexible films of these polymers could be cast from the DMAc or NMP solutions. The cast films had tensile strengths ranging from 64–104 MPa, elongations-at-break from 6 to 10%, and initial moduli from 1.52 to 2.14 GPa. These polyamides had glass transition temperatures in the range of 195 to 240°C. Almost all polymers were thermally stable up to 400°C, with 10% weight loss being recorded above 480°C in air and nitrogen atmospheres. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2273–2280, 1997  相似文献   

19.
Diamine 3,3‐bis[4‐(4‐aminophenoxy)‐3‐methylphenyl]phthalide (BAMP) was derived from the o‐cresolphthalein, and then it was polycondensated with various aromatic dicarboxylic acids and dianhydrides to synthesize polyamides (PAs) and polyimides (PIs), respectively. PAs have inherent viscosities of 0.78–2.24 dL/g. Most of the PAs are readily soluble in a variety of solvents such as DMF, DMAc, and NMP and afforded transparent and tough films from DMAc solutions. The cast films have tensile strengths of 75–113 MPa as well as initial moduli of 1.71–2.97 GPa. These PAs have glass transition temperatures (Tgs) in the range of 242–325°C, 10% weight loss temperatures occur up to 473°C, and char yields are between 57 and 64% at 800°C in nitrogen. PIs were first synthesized to form polyamic acids (PAAs) by a two‐stage procedure that included a ring‐opening reaction, followed by thermal or chemical conversion to polyimides. Inherent viscosities of PAAs are between 0.71 and 1.63 dL/g. Most of the PIs obtained through the chemical cyclodehydration procedure are soluble in NMP, o‐chlorophenol, m‐cresol, etc., and they have inherent viscosities of 0.58–1.32 dL/g. Tgs of these PIs are in the range of 270–305°C and show 10% weight loss temperatures up to 477°C. PIs obtained through the thermal cyclodehydration procedure have tensile strengths of 72–142 MPa, elongations at break of 8–19%, and initial moduli of 1.80–2.72 GPa. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 455–464, 1999  相似文献   

20.
Thermotropic liquid-crystalline polyquinolines with high molecular weights, i.e., poly[2,2′-(α,ω-dioxyphenylene (or -dioxybiphenylene) alkane)-6,6′-(4,4′-dioxybiphenyl)-bis(4-phenylquinoline)]s (P-H-B1Mns or P-H-B2Mns), were synthesized by polycondensation of 4,4′-bis(4-amino-3-benzoylphenoxy)biphenyl and α,ω-bis(4-acetophenoxy (or -acetobiphenoxy))alkanes. For P-H-B1Mn series, the Tm and Ti were in the range of 129–230°C and 156–254°C, respectively, while for the P-H-B2Mn series, those were 182–275°C and 217–309°C, respectively. The introduction of both the dioxybiphenylene group and an alkylene spacer induced thermotropic liquid crystallinity in the polyquinoline, although the introduction of the alkylene spacer alone did not induce it. In addition, polyquinolines substituted with methyl, methoxy, and chloro groups exhibited larger mesophase temperature ranges as well as higher Tms and Tis than the unsubstituted ones. Tensile strengths of these thermotropic polyquinolines were considerably high in the range of 770 to 1170 kgf/cm2. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 749–759, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号