首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Reactions of Halfsandwich Rhenium(V) Oligochalcogenide Complexes with Dimethyl Acetylene Dicarboxylate. Molecular Structures of the New 1,2-Dicarbomethoxy-ethene-1,2-dichalcogenate Chelate Compounds Cp*Re[S2C2(COOMe)2]2 and Cp*Re(NtBu)[Se2C2(COOMe)2] The reaction of Cp*Re(S3)(S4) ( 1a ) with dimethyl acetylene dicarboxylate (dmad) leads through the blue intermediate Cp*Re(S4)[S2C2(COOMe)2] ( 2a ) to the red bis(ethene-1,2-dithiolato) complex Cp*Re[S2C2(COOMe)2]2 ( 3a ). The product 3a is also formed in the reactions of dmad with the tetrasulfidorhenium complexes Cp*Re(L)(S4) (L = O ( 4a ), NtBu ( 5a )) while the analogous tetraselenidorhenium compounds Cp*Re(L)(Se4) ( 4b and 5b ) are only transformed to Cp*Re(L)[Se2C2(COOMe)2] (L = O ( 6b ), NtBu ( 7b )). According to the X-ray crystal structure analyses, the (ethene-1,2-dithiolato)rhenium chelate rings in 3a are folded along the S …? S vector towards the Cp* ligand (angle between the planes ReS2/S2C2 159.2°), whereas the ReSe2C2 chelate ring in 7b is planar.  相似文献   

2.
Chalcogen Derivatives of the Halfsandwich Tungsten(V) Complexes Cp*WCl4 and Cp*WCl4(PMe3). X‐Ray Crystal Structure Analyses of anti ‐[Cp*W(Se)(μ‐Se)]2 and Cp*W(S)2(OMe) The chalcogenation of Cp*WCl4 ( 1 ) by E(SiMe3)2 (E = S, Se) and Te(SiMe2tBu)2 in chloroform solution leads to dimeric products of the type anti‐[Cp*W(E)(μ‐E)]2 (E = S ( 3 a ), Se ( 3 b ) and Te ( 3 c )). An X‐ray structure determination of 3 b indicates a centrosymmetric molecule containing a planar W(μ‐Se)2W ring, the W–W distance (297.9(1) pm) corresponds to a single bond. In the presence of air the two terminal chalcogenido ligands (E) in 3 a – c are stepwise replaced by oxido ligands (O) to give [Cp*W(O)(μ‐E)]2 (E = S ( 5 a ), Se ( 5 b ) and Te ( 5 c )) in quantitative yields. The reaction of Cp*WCl4 with H2S or ammonium polysulfide, (NH4)2Sx (x ∼ 10), leads to Cp*W(S)2Cl ( 6 a ); the corresponding methoxy derivative, Cp*W(S)2OCH3 ( 9 a ), has been characterized by an X‐ray structure analysis. On the other hand, the reaction of Cp*WCl4(PMe3) ( 2 ) with sodium tetrasulfide, Na2S4, in dimethylformamide solution gives a mixture of mononuclear Cp*W(S)(S2)Cl ( 8 a ), dinuclear [Cp*W(S)(μ‐S)]2 ( 3 a ) and a trinuclear side‐product of composition Cp*2W3S7 ( 13 a ). Terminal sulfido ligands are replaced by terminal oxido ligands in solution in the presence of oxygen. Thus, 6 a is stepwise converted into Cp*W(O)(S)Cl ( 10 a ) and CpW(O)2Cl ( 12 a ), whereas 8 a gives Cp*W(O)(S2)Cl ( 11 a ) and 13 a leads to Cp*2W3(O)S6 ( 14 a ). The disulfido complexes 8 a and 11 a are desulfurized by triphenylphosphane to give 6 a and 10 a . The new complexes have been characterized by their IR and NMR spectra and by mass spectrometry.  相似文献   

3.
New 1,1′-Ferrocene Dichalcogenato Complexes of Ruthenium and Osmium Both trinuclear 1,1′-ferrocene dichalcogenato complexes(1) such as fc(E[MLn])2 ( 1a—c ) (with [MLn] = Ru(CO)2Cp*; E = S, Se, Te) and dinuclear [3]ferrocenophane derivatives of the type fcE2[MLn] (with [MLn] = Ru(CO)(η6-C6Me6) ( 2a, b ), Ru(NO)Cp* ( 3a, b ) (E = S, Se) or Os(NO)Cp* ( 4a—c ) (E = S, Se, Te)) were synthesized and characterized by their IR-, 1H- and 13C NMR spectra as well as their mass spectra. The molecular structure of fcS2[Os(NO)Cp*] ( 4a ) was determined by an X-Ray structure analysis; the long Fe…?Os distance of 431.1(1)pm excludes any direct bonding interactions.  相似文献   

4.
Carbonyl–iridium half-sandwich compounds, Cp*Ir(CO)(EPh)2 (E=S, Se), were prepared by the photo-induced reaction of Cp*Ir(CO)2 with the diphenyl dichalcogenides, E2Ph2, and used as neutral chelating ligands in carbonylmetal complexes such as Cp*Ir(CO)(μ-EPh)2[Cr(CO)4], Cp*Ir(CO)(μ-EPh)2[Mo(CO)4] and Cp*Ir(CO)(μ-EPh)2[Fe(CO)3], respectively. A trimethylphosphane–iridium analogue, Cp*Ir(PMe3)(μ-SeMe)2[Cr(CO)4], was also obtained. The new heterodimetallic complexes were characterized by IR and NMR spectroscopy, and the molecular geometry of Cp*Ir(CO)(μ-SePh)2[Mo(CO)4] has been determined by a single crystal X-ray structure analysis. According to the long Ir…Mo distance (395.3(1) Å), direct metal–metal interactions appear to be absent.  相似文献   

5.
The use of [Cp′′2Zr(η1:1-E4)] (E=P ( 1 a ), As ( 1 b ), Cp′′=1,3-di-tert-butyl-cyclopentadienyl) as phosphorus or arsenic source, respectively, gives access to novel stable polypnictogen transition metal complexes at ambient temperatures. The reaction of 1 a/1 b with [CpRNiBr]2 (CpR=CpBn (1,2,3,4,5-pentabenzyl-cyclopentadienyl), Cp′′′ (1,2,4-tri-tert-butyl-cyclopentadienyl)) was studied, to yield novel complexes depending on steric effects and stoichiometric ratios. Besides the transfer of the complete En unit, a degradation as well as aggregation can be observed. Thus, the prismane derivatives [(Cp′′′Ni)2(μ,η3:3-E4)] ( 2 a (E=P); 2 b (E=As)) or the arsenic containing cubane [(Cp′′′Ni)33-As)(As4)] ( 5 ) are formed. Furthermore, the bromine bridged cubanes of the type [(CpRNi)3{Ni(μ-Br)}(μ3-E)4]2 (CpR=Cp′′′: 6 a (E=P), 6 b (E=As), CpR=CpBn: 8 a (E=P), 8 b (E=As)) can be isolated. Here, a stepwise transfer of En units is possible, with a cyclo-E42− ligand being introduced and unprecedented triple-decker compounds of the type [{(CpRNi)3Ni(μ3-E)4}2(μ,η4:4-E′4)] (CpR=CpBn, Cp′′′; E/E′=P, As) are obtained.  相似文献   

6.
Treatment of Li[BH3ER] (E=Se or Te, R=Ph; E=S, R=CH2Ph) with [Cp*CoCl]2 led to the formation of hydridoborate complexes, [{CoCp*Ph}{Cp*Co}{μ-EPh}{μ-κ2-E,H-EBH3}], 1a and 1 b ( 1 a : E=Se; 1 b : E=Te) and a bis-hydridoborate species [Cp*Co{μ-κ2-Se,H-SeBH3}]2, 2 . All the complexes, 1 a , 1 b and 2 are stabilized by β-agostic type interaction in which 1 b represents a novel bimetallic borate complex with a rare B−Te bond. QTAIM analysis furnished direct proof for the existence of a shared and dative B-chalcogen and Co-chalcogen interactions, respectively. In parallel to the formation of the hydridoborate complexes, the reactions also yielded tetracyclic species, [Cp*Co{κ3-E,H,H-E(BH2)2-C5Me5H3}], 3 a and 3 b ( 3 a : E=Se and 3 b : E=S), wherein the bridgehead boron atoms are surrounded by one chalcogen, one cobalt and two carbon atoms of a cyclopentane ring. Molecules 3 a and 3 b are best described as the structural mimic of tetracyclo[4.3.0.02,4.03,5]nonane having identical structure and similar valence electron counts.  相似文献   

7.
Heterometallic Complexes with E6 Ligands (E = P, As) The reaction of [Cp*Co(μ-CO)]2 1 with the sandwich complexes [Cp*Fe(η5-E5)] 2 a: E = P, 2 b: E = As in decalin at 190°C affords besides [CpCo2E4] 4: E = P, 7: E = As and [CpFe2P4] 5 the trinuclear complexes [(Cp*Fe)2(Cp*Co)(μ-η2-P2)(μ31:2:1-P2)2] 3 as well as [(Cp*Fe)2(Cp*Co)(μ32:2:2-As3)2] 6 . With [Mo(CO)5(thf)] 3 and 6 form in a build-up reaction the tetranuclear clusters [(Cp*Fe)2(Cp*Co)E6{Mo(CO)3}] 10: E = P, 11: E = As. 3, 6 and 11 have been further characterized by an X-ray crystal structure determination.  相似文献   

8.
The reactions of Cp*M(PMe3)Cl2 (M = Rh ( 1a ), Ir ( 1b )) with (NEt4)2[WS4] led to the heterodimetallic sulfido‐bridged complexes Cp*M(PMe3)[(μ‐S)2WS2] (M = Rh ( 2a ), Ir ( 2b )), whereas the dimers [Cp*MCl(μ‐Cl)]2 (M = Rh ( 4a ), Ir ( 4b )) reacted with (NEt4)2[WS4) to give the known trinuclear compounds [Cp*M(Cl)]2(μ‐WS4) (M = Rh ( 5a ), Ir ( 5b )). Hydrolysis of the terminal W=S bonds converts 2a, b into Cp*M(PMe3)[(μ‐S)2WO2] (M = Rh ( 3a ), Ir ( 3b )). Salts of a heterodimetallic anion, A[CpMo(I)(NO)(WS4)] ( 6 ) (A+ = NEt4+, NPh4+) were obtained by reactions of [CpMo(NO)I2]2 with tetrathiotungstates, A2[WS4]. The complexes were characterized by IR and NMR (1H, 13C, 31P) spectroscopy, and the X‐ray crystallographic structure of Cp*Rh(PMe3)[(μ‐S)2WS2] ( 2a ) has been determined. The bond lengths and angles in the coordinations spheres of Rh and W in 2a (Rh···W 288.5(1) pm) are compared with related complexes containing terminal [WS42—] chelate ligands.  相似文献   

9.
On Chalcogenide Halogenides of Rhenium: Synthesis and Crystal Structures of the Triangular Clusters Re3E7X7 (E = S, Se; X = Cl, Br) The compounds Re3E7X7 are obtained from rhenium tetrahalides ReX4, elemental chalcogens and the respective chalcogen halides E2X2 or SeX4 (E = S, Se; X = Cl, Br). Re3S7Cl7, Re3S7Br7 and Re3Se7Br7 are formed in solutions of sulfur or selenium halides or SiBr4 in form of black crystals and crystallize isotypically in the trigonal space group P31c. Re3Se7Cl7 is formed by solid state reaction of ReCl4, Se and SeCl4 or by thermal decomposition of Se4[ReCl6], crystallizing as red, in thin layers transparent crystals in the orthorhombic space group Pbcm. The crystal structures consist of discrete positively charged cluster units and halide ions according to the formula [Re33-E)(μ2-E2)3X6]+X. In the rhenium triangular clusters the Re–Re distances range from 269,0 to 270,4 pm for the sulfur and from 273,3 to 275,3 pm for the selenium containing compounds. The Re3 units are capped by chalcogen atoms, three E2 groups form bridges over the edges of the Re3 triangles. The trigonal and the orthorhombic structure type show differences in the site symmetry of the clusters (C3 vs. Cs) and in the stacking sequence of the molecules, which are packed in the motif of a closest packing of spheres.  相似文献   

10.
The prototype hetero-binuclear complexes containing metal-metal bonds, {CpRh[E2C2(B10H10)]}[Fe(CO)3] (Cp = Cp* = eta 5-Me5C5, E = S(5a), Se(5b); Cp = Cp = eta 5-1,3-tBu2C5H3, E = S(6a), Se(6b)) and {CpCo[E2C2(B10H10)]}[Fe(CO)3] (Cp = Cp* = eta 5-Me5C5, E = S(7a), Se(7b); Cp = Cp = eta 5-C5H5, E = S(8a), Se(8b)) were obtained from the reactions of 16-electron complexes CpRh[E2C2(B10H10)] (Cp = Cp*, E = S(1a), Se(1b); Cp = Cp, E = S(2a), Se(2b)), CpCo[E2C2(B10H10)] (Cp = Cp*, E = S(3a), Se(3b); Cp = Cp, E = S(4a), Se(4b)) with Fe(CO)5 in the presence of Me3NO. The molecular structures of {Cp*Rh[E2C2(B10H10)]}[Fe(CO)3] (E = S(5a), Se(5b)), {CpRh[S2C2(B10H10)]}[Fe(CO)3] (6a) {Cp*Co[S2C2(B10H10)]}[Fe(CO)3] (7a) and {CpCo[S2C2(B10H10)]}[Fe(CO)3] (8a) have been determined by X-ray crystallography. All these complexes were characterized by elemental analysis and IR and NMR spectra.  相似文献   

11.
Azametallacyclopropane-containing base stabilized borane complexes of group 5 transition metals have been synthesized and their structural aspects have been described. Treatment of Cp* based Ta and Nb chlorides, Cp*TaCl4 and Cp*NbCl4 with [LiBH4 ⋅ THF] followed by addition of ligands, such as 2-mercaptobenzothiazole, MBT, (C7H5NS2) and 2-mercaptobenzoxazole, MBO (C7H5NSO) led to the formation of complexes [Cp*M-[BHS(CH2ENC6H4)(C7H4NSE)] ( 1 : M=Ta, E=S; 2 ; M=Nb, E=S; 3 : M=Ta, E=O; 4 ; M=Nb, E=O, Cp*=pentamethyl-η5-cyclopentadienyl). By means of UV-vis absorption spectra, the electronic properties of these complexes associated with central metal atoms and heteroatoms (S or O) have been evaluated. In contrast, treatment of Cp*TaCl4 with 2-mercaptopyridine, MP, (C5H5NS) under the same reaction conditions yielded the agostic σ-borane Ta complex, [Cp*Ta(H3BNC5H4) (C5H4NS)(η2-S2)], 5 . Unlike 1 – 4 , where the metals interact with boron through bridging sulphur, 5 shows a notable σ-B−H bond interaction with Ta. All spectroscopic data of 1 – 5 along with the X-ray diffraction studies suggest complexes 2 , 4 , and 5 are base (amine) stabilized borane species. Computational studies based on Density Functional Theory (DFT) also supported this conclusion.  相似文献   

12.
A series of hetero- and homo-dinuclear complexes with direct metal-metal interaction are synthesized through reaction of Cp*Rh[E(2)C(2)(B(10)H(10))] (E = S (1a), Se (1b)) and CpRh[S(2)C(2)(B(10)H(10))] (2a) with low valent half-sandwich CpCo(CO)(2) or CpRh(C(2)H(4))(2) under moderate conditions. The resulting products, namely (Cp*Rh)(CpCo)[E(2)C(2)(B(10)H(10))] (E = S(3a); Se(3b)), (Cp*Rh)(CpRh)[E(2)C(2)(B(10)H(10))] (E = S(4a); Se(4b)) and (CpRh)(CpRh)[S(2)C(2)(B(10)H(10))] (5a), are fully characterized by IR and NMR spectroscopy and elemental analysis. The molecular structures of 3a, 3b, 4a, 4b and 5a are established by X-ray crystallography analyses, and the Rh-Co (2.4778(11) (3a) and 2.5092(16) (3b) A) and Rh-Rh bonds (2.5721(8) (4a), 2.6112(10) (4b), 2.5627(10) (5a) A) fall in the range of single bonds.  相似文献   

13.
The consequences of replacement of the symmetrically chelate ligands in [M(E2CNR2)3] (E = S, Se) complexes of potential 32 symmetry by analogous mixed S,Se unsymmetrical chelates are explored for both small (M = Co) and large (M = In) metal atoms, and R = primary (Et) and secondary (iPr) alkyl substituents by way of low‐temperature single crystal X‐ray studies of [(Co(SSeCNEt2)3] ([Co(Se2CNEt2)3] also determined as datum), and [In(SSeCNR2)3], R = Et, iPr. The structure of [(iPr2N·CS·Se)2] is also recorded.  相似文献   

14.
金国新  刘宇  于晓燕 《有机化学》2000,20(2):202-205
以半夹心结构铑的化合物Cp*Rh(CN^tBu)Cl2(1)(Cp*=η^5-C5Me5)与Fe(C5H4ELi)2.2THF反应,合成出异双核二茂铁化合物Cp*Rh(CN^tBu)(EC5H4)2Fe[E=S(2),Se(3),Te(4)]。通过AgBF4氧化2和3得到二茂铁离子型化合物[Cp*Rh(CN^tBu)(EC5H4)2Fe]BF4[E=S(5),Se(6)]。采用元素分析、红外光谱、^1H和13CNMR谱以及EI-MS表征了所合成的化合物。  相似文献   

15.
A series of group 6 transition metal half-sandwich complexes with 1,1-dichalcogenide ligands have been prepared by the reactions of Cp*MCl(4)(Cp* = eta(5)-C(5)Me(5); M = Mo, W) with the potassium salt of 2,2-dicyanoethylene-1,1-dithiolate, (KS)(2)C=C(CN)(2) (K(2)-i-mnt), or the analogous seleno compound, (KSe)(2)C=C(CN)(2) (K(2)-i-mns). The reaction of Cp*MCl(4) with (KS)(2)C=C(CN)(2) in a 1:3 molar ratio in CH(3)CN gave rise to K[Cp*M(S(2)C=C(CN)(2))(2)] (M = Mo, 1a, 74%; M = W, 2a, 46%). Under the same conditions, the reaction of Cp*MoCl(4) with 3 equiv of (KSe)(2)C=C(CN)(2) afforded K[Cp*Mo(Se(2)C=C(CN)(2))(2)] (3a) and K[Cp*Mo(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))] (4) in respective yields of 45% and 25%. Cation exchange reactions of 1a, 2a, and 3a with Et(4)NBr resulted in isolation of (Et(4)N)[Cp*Mo(S(2)C=C(CN)(2))(2)] (1b), (Et(4)N)[Cp*W(S(2)C=C(CN)(2))(2)] (2b), and (Et(4)N)[Cp*Mo(Se(2)C=C(CN)(2))(2)] (3b), respectively. Complex 4 crystallized with one THF and one CH(3)CN molecule as a three-dimensional network structure. Inspection of the reaction of Cp*WCl(4) with (KSe)(2)C=C(CN)(2) by ESI-MS revealed the existence of three species in CH(3)CN, [Cp*W(Se(2)C=C(CN)(2))(2)]-, [Cp*W(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))]-, and [Cp*W(Se(Se(2))C=C(CN)(2))(2)]-, of which [Cp*W(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))]-(5) was isolated as the main product. Treatment of 2a with 1/4 equiv of S(8) in refluxing THF resulted in sulfur insertion and gave rise to K[Cp*W(S(2)C=C(CN)(2))(S(S(2))C=C(CN)(2))](6), which crystallized with two THF molecules forming a three-dimensional network structure. 6 can also be prepared by refluxing 2a with 1/4 equiv of S(8) in THF. 3a readily added one Se atom upon treatment with 1 mol of Se powder in THF to give 4 in high yield, while the treatment of 3a or 4 with 2 equiv of Na(2)Se in THF led to formation of a dinuclear complex [(Cp*Mo)(2)(mu-Se)(mu-Se(Se(3))C=C(CN)(2))] (7). The structure of 7 consists of two Cp*Mo units bridged by a Se(2-) and a [Se(Se(3))C=C(CN)(2)](2-) ligand in which the triselenido group is arranged in a nearly linear way (163 degrees). The reaction of 2a with 2 equiv of CuBr in CH(3)CN yielded a trinuclear complex [Cp*WCu(2)(mu-Br)(mu(3)-S(2)C=C(CN)(2))(2)] (8), which crystallized with one CH(3)CN and generated a one-dimensional chain polymer through bonding of Cu to the N of the cyano groups.  相似文献   

16.
A systematic study on the reactivity of the triple-decker complex [(Cp’’’Co)2(μ,η44-C7H8)] ( A ) (Cp’’’=1,2,4-tritertbutyl-cyclopentadienyl) towards sandwich complexes containing cyclo-P3, cyclo-P4, and cyclo-P5 ligands under mild conditions is presented. The heterobimetallic triple-decker sandwich complexes [(Cp*Fe)(Cp’’’Co)(μ,η54-P5)] ( 1 ) and [(Cp’’’Co)(Cp’’’Ni)(μ,η33-P3)] ( 3 ) (Cp*=1,2,3,4,5-pentamethylcyclopentadienyl) were synthesized and fully characterized. In solution, these complexes exhibit a unique fluxional behavior, which was investigated by variable temperature NMR spectroscopy. The dynamic processes can be blocked by coordination to {W(CO)5} fragments, leading to the complexes [(Cp*Fe)(Cp’’’Co)(μ3541-P5){W(CO)5}] ( 2 a ), [(Cp*Fe)(Cp’’’Co)(μ45411-P5){(W(CO)5)2}] ( 2 b ), and [(Cp’’’Co)(Cp’’’Ni)(μ3321-P3){W(CO)5}] ( 4 ), respectively. The thermolysis of 3 leads to the tetrahedrane complex [(Cp’’’Ni)2(μ,η22-P2)] ( 5 ). All compounds were fully characterized using single-crystal X-ray structure analysis, NMR spectroscopy, mass spectrometry, and elemental analysis.  相似文献   

17.
The selective formation of the dinuclear butterfly complexes [{Cp′′′Fe(CO)2}2(μ,η1:1‐E4)] (E=P ( 1 a ), As ( 1 b )) and [{Cp*Cr(CO)3}2(μ,η1:1‐E4)] (E=P ( 2 a ), As ( 2 b )) as new representatives of this rare class of compounds was found by reaction of E4 with the corresponding dimeric carbonyl complexes. Complexes 1 b and 2 b are the first As4 butterfly compounds with a bridging coordination mode. Moreover, first studies regarding the reactivity of 1 b and 2 b are presented, revealing the formation of the unprecedented As8 cuneane complexes [{Cp′′′Fe(CO)2}2{Cp′′′Fe(CO)}241:1:2:2‐As8)] ( 3 b ) and [{Cp*Cr(CO)3}441:1:1:1‐As8)] ( 4 ). The compounds are fully characterized by NMR and IR spectroscopy as well as by X‐ray structure analysis. In addition, DFT calculations give insight into the transformation pathway from the E4 butterfly to the corresponding cuneane structural motif.  相似文献   

18.
The oxidation of the 28 VE cyclo‐E6 triple‐decker complexes [(CpRMo)2(μ,η66‐E6)] (E=P, CpR=Cp( 2 a ), Cp*( 2 b ), CpBn( 2 c )=C5(CH2Ph)5; E=As, CpR=Cp*( 3 )) by Cu+ or Ag+ leads to cationic 27 VE complexes that retain their general triple‐decker geometry in the solid state. The obtained products have been characterized by cyclic voltammetry (CV), EPR, Evans NMR, multinuclear NMR spectroscopy, MS, and structural analysis by single‐crystal X‐ray diffraction. The cyclo‐E6 middle decks of the oxidized complexes are distorted to a quinoid ( 2 a ) or bisallylic ( 2 b , 2 c , 3 ) geometry. DFT calculations of 2 a , 2 b , and 3 persistently result in the bisallylic distortion as the minimum geometry and show that the oxidation leads to a depopulation of the σ‐system of the cyclo‐E6 ligands in 2 a – 3 . Among the starting complexes, 2 c is reported for the first time including its preparation and full characterization.  相似文献   

19.
Reactions of [Tp*Rh(coe)(MeCN)](1; Tp*= hydrotris(3,5-dimethylpyrazol-1-yl); coe = cyclooctene) with one equiv of diphenyl dichalcogenides PhEEPh (E = Se, Te) afforded the mononuclear Rh(III) complexes [Tp*Rh(EPh)(2)(MeCN)](2b: E = Se; 2c: E = Te), as reported previously for the formation of [Tp*Rh(SPh)(2)(MeCN)](2a) from the reaction of 1 and PhSSPh. Complexes 2a-2c were treated with the Ru(II) complex [(Cp*Ru)(4)(mu(3)-Cl)(4)](Cp*=eta(5)-C(5)Me(5)) in THF at room temperature, yielding the chalcogenolato-bridged dinuclear complexes [Tp*RhCl(mu-EPh)(2)RuCp*(MeCN)](3). Complex 3a (E = S) in solution was converted slowly into a mixture of 3a and the sterically less encumbered dinuclear complex [Tp*RhCl(SPh)(mu-eta(1)-S-eta(6)-Ph)RuCp*](4a) at room temperature. In 4a, one SPh group binds only to the Rh center as a terminal ligand, while the other SPh group bridges the Rh and Ru atoms by coordinating to the former at the S atom and to the latter with the Ph group in a pi fashion. The Se analogue 3b also underwent a similar transformation under more forcing conditions, e.g. in benzene at reflux, whereas formation of the mu-eta(1)-Te-eta(6)-Ph complex was not observed for the Te analogue 3c even under these forcing conditions. When complexes 3 was dissolved in THF exposed to air, the MeCN ligand bound to Ru was substituted by dioxygen to give the peroxo complexes [Tp*RhCl(mu-EPh)(2)RuCp*(eta(2)-O(2))](5a: E = S; 5b: E = Se; 5c: E = Te). X-Ray analyses have been undertaken to determine the detailed structures for 2c, 3a, 3b, 4a, 5a, 5b, and 5c.  相似文献   

20.
Structures of New SeII and TeII Complexes Containing 2,2-Dicyanethylene-1,1-dithiolate, 2,2-Dicyanethylene-1,1-thioselenolate, and 2,2-Dicyanethylene-1,1-diselenolate (NBu4)2{Se[S2C?C(CN)2]2} ( I ), (AsPh4)2 · {Te[SSeC?C(CN)2]2} ( II ), and (NBu4)2{Te[Se2C?C(CN)2]2} ( III ) containing the bidentate chelate ligands 2,2-dicyanethylene-1,1-dithiolate i-mnt , 2,2-dicyanethylene-1,1-thioselenolate i-mnts , and 2,2-dicyanethylene-1,1-diselenolate i-mns have been prepared and characterized by X-ray structure analysis. The central units consist of [M(X? X)2E2]2? (M = Se, Te; X? X = ligand; E = lone-pair) with fourfold coordinated SeII and TeII, respectively. The complex anions [Se(i-mnt)2E2]2? as well as [Te(i-mnts)2E2]2? show a trapezoide distortion with d(Se? S) = 2.276(5); 2.287(5); 2.803(5); 2.789(5) Å and d(Te? Se) = 2.611(2); 2.617(3); d(Te? S) = 2.889(5); 2.935(4) Å. In III there are centrosymmetric complex anions [Te(i-mns)2E2]2? with nearly identical Te? Se-bond-lengths: 2.674(3) and 2.692(2) Å. These Te? Se bonds are elongated compared to usual Te? Se bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号