首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Polynuclear Cobalt Complexes. IV. Preparation and Structure of [(papd)Co(O2)Co(papd)](S2O6)(NO3)2 · 4 H2O The binuclear peroxo complex [(papd)Co(O2)Co(papd)](S2O6)(NO3)2 · 4 H2O I crystallizes in the triclinic space group P1 . Lattice constants are a = 9.405(4), b = 9.270(4), c = 12.218(6)Å, α = 89.58(5), β = 99.08(6), γ = 114.79(5)° for Z = 1. The binuclear cation has a center of symmetry, so the Co? O? O? Co unit is planar. Three chelate rings have a common plane, the ligand configuration is δ.  相似文献   

2.
Polynuclear Cobalt Complexes. II. Preparation and Structure of [(tren) (NH3)Co(O2)Co(NH3) (tren)](SCN)4 · 2H2O The title compound is obtained on oxygenation of [Co(tren)(H2O)2]2+ in 6M aqueous ammonia or by ligand exchange starting from [(NH3)5Co(O2)Co(NH3)5]-(NO3)4. An X-ray structure determination was made. The substance forms monoclinic crystals, space group P21/c, lattice constants a=10,135, b=8,473, c=19,484 Å, β=108,58°, with two formula units in the cell. The final R is 0,066. The binuclear cation has a center of symmetry, so the Co? O? O? Co unit is planar; the Co? O? O angle is 111,5°. The tertiary nitrogen atoms of both chelate groups are cis to the O2 bridge, as found in doubly bridged [(tren)Co(O2,OH)Co(tren)](ClO4)3 · 3H2O. On acidification in solution, the singly bridged cation [(tren) (NH3)CoO2Co(NH3)(tren)]4+ (a) loses the bound O2 completely. But unlike the doubly bridged cation b , the rate of dissociation of a is independent of pH (Fig. 5). At higher pH (8–10) bridging a→b (Fig. 2) occurs. Both reactions must have the same rate determining step, the first order rate constants being of the order of 2 · 10?3 s?1 (25°, 0,35M KCl).  相似文献   

3.
A Titanium (IV) Complex with Two Coordinatively Bonded Water Molecules: [(π-C5H5)2Ti(H2O)2](NO3)2 (π-C5H5)2Ti(NO3)2 and H2O react in acetone to form the diaquo complex [(π-C5H5)2-Ti(H2O)2](NO3)2 ( A ). An X-ray analysis shows the titanium atom to be nearly tetrahedrally coordinated. Mean values of distances: Ti? O 2.01 Å, Ti? Z 2.03 Å (Z = center of ring); angles: O? Ti? O 92.7°, Z? Ti? Z 133.6°. Anions and cations are joined by hydrogen bonds to form strands that run in the direction of the crystallographic a axis. A crystallizes in the orthorhombic space group Pnma with Z = 4 and lattice parameters at ? 100°C a = 7.601(2), b = 13.458(4) and c = 13.139(4) Å.  相似文献   

4.
The title compound [La(phen)2(H2O)2(NO3)2](NO3) · 2(phen)(H2O) with phen = 1,10‐phenanthroline was prepared by the stoichiometric reaction of La(NO3)3 · 6 H2O and 1,10‐phenanthroline monohydrate in a CH3OH–H2O solution. The crystal structure (triclinic, P 1 (no. 2), a = 11.052(2), b = 13.420(2), c = 16.300(2) Å, α = 78.12(1)°, β = 88.77(1)°, γ = 83.03(1)°, Z = 2, R = 0.0488, wR2 = 0.1028) consists of [La(phen)2(H2O)2(NO3)2]2+ complex cations, NO3 anions, phen and H2O molecules. The La atom is 10‐fold coordinated by four N atoms of two bidentate chelating phen ligands and six O atoms of two H2O molecules and two bidentate chelating NO32– ligands with d(La–O) = 2.522–2.640 Å and d(La–N) = 2.689–2.738 Å. The intermolecular π‐π stacking interactions play an essential role in the formation of two different 2 D layers parallel to (001), which are formed by complex cations and uncoordinating phen molecules, respectively. The uncoordinated NO3 anions and H2O molecules are sandwiched between the cationic and phen layers.  相似文献   

5.
The Crystal Structures of [Cu2Cl2(AA · H+)2](NO3)2 and [AA · H+]Picr? (AA · H+ = Allylammonium; Picr? = Picrat) By an alternating current electro synthesis the crystal-line π-complex [Cu2Cl2(AA · H+)2](NO3)2 has been obtained from CuCl2 · 2H2O, allylamine (AA), and HNO3 in ethanolic solution. X-ray structure analysis revealed that the compound crystallized in the monoclinic system, space group P21/a, a = 7.229(3), b = 7.824(3), c = 26.098(6) Å, γ = 94.46(5)°, Z = 4, R = 0.025 for 2 023 reflections. The crystal structure is built up of CunCln chains which are connected by π-bonding bidentate AA · H+ …? ON(O)O …? H+ · AA units. For comparision with the above complex the structure of [AA · H+]Picr? (Picr? = picrate anion) is also reported.  相似文献   

6.
Synthesis of [Cu(m-HBH)2(OH2)2](NO3)2·2H2O, where m-HBH = C7H8O2N2 (3-hydroxybenzoylhydrazine), is described. The structure of the compound was studied by X-ray phase analysis and IR spectroscopy; crystal data are a = 57.415(6) Å, b = 19.760(2) Å, c = 7.586(2) Å; Fdd 2, Z = 16, R(F) = 0.053. The compound consists of [Cu(m-HBH)2(OH2)2]2+ complex cations, NO 3 ? anions, and two water molecules. The similarity between the IR spectra of Cu(m-HBH)2(NO3)2·nH2O and Co(m-HBH)2(NO3)2·5H2O, element analysis data, and crystal data obtained at the first stage of X-ray analysis show that the structures and compositions of these compounds are identical relative to the type of surroundings of the central atom. In contrast to the cobalt compound [Co(m-HBH)2(OH2)2](NO3)2·3H2O, in which the cobalt atom has a nearly regular octahedron as a coordination polyhedron, the copper(II) compound has a square bipyramid around the copper atom; c.n. is 6 = 4 + 2 (planar distances: 2.013(2) Å, 2.021(2) Å, 2.033(3) Å, 2.087(3) Å; axial distances: 2.367(3) Å, 2.374(3) Å) and lacks one crystallization water molecule.  相似文献   

7.
Blue crystals of a Cu(NO3)2 · H2O were synthesized by interaction of CuO with boiling 100% HNO3. Stable β-Cu(NO3)2 modification was obtained by the sublimation of copper(II) nitrate in evacuated ampoule over the 150→100°C temperature gradient for 24 hr. According to X-Ray single crystal analysis Cu(NO3)2 · H2O is monoclinic with a = 6.377(1), b = 8.548(1), c = 9.769(1) Å, β = 100.41(1)°, Z = 4, and space group P21/c. β-modification Cu(NO3)2 is orthorhombic with a = 14.161(5), b = 7.516(3), c = 12.886(2) Å, Z = 12, and space group Pbcn. In the both structures Cu atoms are square coordinated by 4 O atoms at the distances ranging from 1.92 to 2.02 Å. In each structure there are also additional Cu? O bonds with the distance of 2.33 or 2.35 Å and some weaker ones with the distances in the range of 2.65–2.72 Å. In the Cu(NO3)2 · H2O structure the [CuO4] squares are connected by the bridging NO3 groups into zigzag chains, which are linked into layers by the longer Cu? O bonds. In the β-Cu(NO3)2 structure the [CuO4] fragments of two types are joined by the bridging NO3 groups in a three-dimensional framework. Some correlations were found between N? O distances and coordination functions of O atoms.  相似文献   

8.
Two coordination polymers {[Cd(phen)](C6H8O4)3/3} ( 1 ) and {[Cd(phen)](C7H10O4)3/3} · 2H2O ( 2 ) were structurally characterized by single crystal X‐ray diffraction methods. In 1 (C2/c (no. 15), a = 16.169(2)Å, b = 15.485(2)Å, c = 14.044(2)Å, β = 112.701(8)°, U = 3243.9(7)Å3, Z = 8), the Cd atoms are coordinated by two N atoms of one phen ligand and five O atoms of three adipato ligands to form mono‐capped trigonal prisms with d(Cd‐O) = 2.271‐2.583Å and d(Cd‐N) = 2.309, 2.390Å. The [Cd(phen)] moieties are bridged by adipato ligands to generate {[Cd(phen)](C6H8O4)3/3} chains, which, via interchain π—π stacking interactions, are assembled into layers. Complex 2 (P1¯(no. 2), a = 9.986(1)Å, b = 10.230(3)Å, c = 11.243(1)Å, α = 66.06(1)°, β = 87.20(1)°, γ = 66.71(1)°, U = 955.7(2)Å3, Z = 2) consists of {[Cd(phen)](C7H10O4)3/3} chains and hydrogen bonded H2O molecules. The Cd atoms are pentagonal bipyramidally coordinated by two N atoms of one phen ligand and five O atoms of three pimelato ligands with d(Cd‐O) = 2.213—2.721Å and d(Cd‐N) = 2.329, 2.372Å. Through interchain π—π stacking interactions, the {[Cd(phen)](C7H10O4)3/3} chains resulting from [Cd(phen)] moieties bridged by pimelato ligands are assembled in to layers, between which the hydrogen bonded H2O molecules are sandwiched.  相似文献   

9.
Light‐yellow single crystals of the mixed‐valent mercury‐rich basic nitrate Hg8O4(OH)(NO3)5 were obtained as a by‐product at 85 °C from a melt consisting of stoichiometric amounts of (HgI2)(NO3)2·2H2O and HgII(OH)(NO3). The title compound, represented by the more detailed formula HgI2(NO3)2·HgII(OH)(NO3)·HgII(NO3)2·4HgIIO, exhibits a new structure type (monoclinic, C2/c, Z = 4, a = 6.7708(7), b = 11.6692(11), c = 24.492(2) Å, β = 96.851(2)°, 2920 structure factors, 178 parameters, R1[F2 > 2σ(F2)] = 0.0316) and is made up of almost linear [O‐HgII‐O] and [O‐HgI‐HgI‐O] building blocks with typical HgII‐O distances around 2.06Å and a HgI‐O distance of 2.13Å. The Hg22+ dumbbell exhibits a characteristic Hg‐Hg distance of 2.5079(7) Å. The different types of mercury‐oxygen units form a complex three‐dimensional network exhibiting large cavities which are occupied by the nitrate groups. The NO3? anions show only weak interactions between the nitrate oxygen atoms and the mercury atoms which are at distances > 2.6Å from one another. One of the three crystallographically independent nitrate groups is disordered.  相似文献   

10.
[Cu(NH3)2](NO3)2 ( I ) and [Cu(NH3](NO3)2 ( II ) were synthesized by interaction of molten NH4NO3 with [Cu(NH3)4](NO3)2 and Cu(NO3)2 · 3 H2O, respectively, at 180 to 195°C for 24 hr. According to X-Ray single crystal analysis, I is orthorhombic (sp. gr. Pbca) with a = 5.678(1), b = 9.765(2), c = 11.596(2) Å, Z = 4, R = 0.060; II is monoclinic (sp. gr. P21/c) with a = 6.670(1), b = 8.658(2), c = 9.661(2) Å, β = 101.78(2)°, Z = 4, R = 0.027. In both structures, the nearest coordination environment of Cu is a slightly distorted square formed by N (from NH3) and O atoms (from NO3 groups). The structure of I consists of centrosymmetrical [Cu(NH3)2](NO3)2 molecules linked by hydrogen bonds. The Cu? N and Cu? O distances are 1.98 and 2.01 Å, respectively. In II , the Cu? N distance is 1.95 Å, the Cu? O distances are 1.96, 2.02, and 2.03 Å. The [CuO3NH3] squares are connected by NO3 bridges into zigzag chains, which are linked into layers by longer Cu? O interactions (2.31 Å). Obviously, the layers are additionally strengthened and held together by hydrogen bonds.  相似文献   

11.
Single crystals of trans-[Pd(NO3)2(H2O)2] were obtained, and the crystal structure of this complex, previously obtained for polycrystals, was refined. Crystal data (BRUKER X8APEX diffractometer): a = 4.9973(7) Å, b = 10.5982(14) Å, c = 11.7008(17) Å, V = 619.70(15) Å3, space group Pbca, Z = 4, d calc = 2.856 g/cm3. The structure is composed of neutral complexes with a trans configuration. The square plane environment of the Pd atom is formed by four oxygen atoms (Pd-O(NO3) 1.999(5) Å, Pd-O(H2O) 2.030(5) Å) and completed to a distorted bipyramid by two intramolecular contacts (Pd…O(NO3) 2.926 Å). The shortest hydrogen bonds are O…H 2.72 Å.  相似文献   

12.
Single crystals of Sr[B(C6H5O7)2](H2O)4 · 3H2O, a new borate‐citrate material, were grown with sizes up to 8 × 6 × 2 mm by slow evaporation of water at room temperature. The structure of Sr[B(C6H5O7)2](H2O)4 · 3H2O was determined by single‐crystal X‐ray diffraction. It crystallizes in the monoclinic space group P21/c, with a = 11.363(3) Å, b = 18.829(4) Å, c = 11.976(3) Å, β = 110.736(3)°, and Z = 4. The SrO8 dodecahedra, BO4 tetrahedra and citrate groups are linked together to form chains. The compound was characterized by IR and UV/Vis/NIR transmittance spectroscopy as well as thermal analysis.  相似文献   

13.
The blue copper complex compounds [Cu(phen)2(C6H8O4)] · 4.5 H2O ( 1 ) and [(Cu2(phen)2Cl2)(C6H8O4)] · 4 H2O ( 2 ) were synthesized from CuCl2, 1,10‐phenanthroline (phen) and adipic acid in CH3OH/H2O solutions. [Cu(phen)2‐ (C6H8O4)] complexes and hydrogen bonded H2O molecules form the crystal structure of ( 1 ) (P1 (no. 2), a = 10.086(2) Å, b = 11.470(2) Å, c = 16.523(3) Å, α = 99.80(1)°, β = 115.13(1)°, γ = 115.13(1)°, V = 1617.5(5) Å3, Z = 2). The Cu atoms are square‐pyramidally coordinated by four N atoms of the phen ligands and one O atom of the adipate anion (d(Cu–O) = 1.989 Å, d(Cu–N) = 2.032–2.040 Å, axial d(Cu–N) = 2.235 Å). π‐π stacking interactions between phen ligands are responsible for the formation of supramolecular assemblies of [Cu(phen)2(C6H8O4)] complex molecules into 1 D chains along [111]. The crystal structure of ( 2 ) shows polymeric [(Cu2(phen)2Cl2)(C6H8O4)2/2] chains (P1 (no. 2), a = 7.013(1) Å, b = 10.376(1) Å, c = 11.372(3) Å, α = 73.64(1)°, β = 78.15(2)°, γ = 81.44(1)°, V = 773.5(2) Å3, Z = 1). The Cu atoms are fivefold coordinated by two Cl atoms, two N atoms of phen ligands and one O atom of the adipate anion, forming [CuCl2N2O] square pyramids with an axial Cl atom (d(Cu–O) = 1.958 Å, d(Cu–N) = 2.017–2.033 Å, d(Cu–Cl) = 2.281 Å; axial d(Cu–Cl) = 2.724 Å). Two square pyramids are condensed via the common Cl–Cl edge to centrosymmetric [Cu2Cl2N4O2] dimers, which are connected via the adipate anions to form the [(Cu2(phen)2Cl2)(C6H8O4)2/2] chains. The supramolecular 3 D network results from π‐π stacking interactions between the chains. H2O molecules are located in tunnels.  相似文献   

14.
A new ruthenium(II) complex [Ru(NO2)4(CO)(H2O)]Cl2 · 2H2O has been prepared and characterized structurally. The compound crystallizes in monoclinic space group C2 /m, with the unit cell parameters a = 12.913(2), b = 14.605(2), c = 7.4494(1)Å, ß =121.49(2)°; V = 1198.0(3)Å3, Z = 4, Dc = 2.429 Mgm—3; μ = 1.83 mm—1; R = 0.0455, wR = 0.1552. The complex contains four neutral NO2 ligands. The ruthenium atom is six‐coordinated to four nitrogen atoms of nitrogen dioxide, one carbon atom from carbon monoxide and one oxygen atom from water molecule, forming slightly distorted octahedral coordination. The preparation procedure has been discussed.  相似文献   

15.
Reactions of 1,10‐phenanthroline monohydrate, Na2C4H4O4 · 6 H2O and MnSO4 · H2O in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(phen)2(C4H4O4)2] · 2 H2O ( 1 ) and [Mn(phen)2(H2O)2][Mn(phen)2(C4H4O4)](C4H4O4) · 7 H2O ( 2 ). The crystal structure of 1 (P1 (no. 2), a = 8.257(1) Å, b = 8.395(1) Å, c = 12.879(2) Å, α = 95.33(1)°, β = 104.56(1)°, γ = 106.76(1)°, V = 814.1(2) Å3, Z = 1) consists of the dinuclear [Mn2(H2O)4(phen)2(C4H4O4)2] molecules and hydrogen bonded H2O molecules. The centrosymmetric dinuclear molecules, in which the Mn atoms are octahedrally coordinated by two N atoms of one phen ligand and four O atoms from two H2O molecules and two bis‐monodentate succinato ligands, are assembled via π‐π stacking interactions into 2 D supramolecular layers parallel to (101) (d(Mn–O) = 2.123–2.265 Å, d(Mn–N) = 2.307 Å). The crystal structure of 2 (P1 (no. 2), a = 14.289(2) Å, b = 15.182(2) Å, c = 15.913(2) Å, α = 67.108(7)°, β = 87.27(1)°, γ = 68.216(8)°, V = 2934.2(7) Å3, Z = 2) is composed of the [Mn(phen)2(H2O)2]2+ cations, [Mn(phen)2(C4H4O4)] complex molecules, (C4H4O4)2– anions, and H2O molecules. The (C4H4O4)2– anions and H2O molecules form 3 D hydrogen bonded network and the cations and complex molecules in the tunnels along [001] and [011], respectively, are assembled via the π‐π stacking interactions into 1 D supramolecular chains. The Mn atoms are octahedrally coordinated by four N atoms of two bidentate chelating phen ligands and two water O atoms or two carboxyl O atoms (d(Mn–O) = 2.088–2.129 Å, d(Mn–N) = 2.277–2.355 Å). Interestingly, the succinato ligands in the complex molecules assume gauche conformation bidentately to chelate the Mn atoms into seven‐membered rings.  相似文献   

16.
Synthesis, Structure, and Properties of Some Selenidostannates. II. [(C2H5)3NH]2Sn3Se7 · 0,25 H2O and [(C3H7)2NH2]4Sn4Se10 · 4 H2O The new selenidostannate hydrates [(C2H5)3NH]2Sn3Se7 · 0.25 H2O ( I ) and [(C3H7)2NH2]4Sn4Se10 · 4 H2O ( II ) were synthesized from an aqueous suspension of triethylammonium (tripropylammonium), tin, selenium I and in addition sulfur II at 130 °C. I crystallizes at ambient temperature in the monoclinic space group P21/n (a = 2069,3(4) pm, b = 1396,6(3) pm, c = 2342,8(5) pm, β = 114,68(3)°, Z = 8) and is characterized by two different anions, chains from edge‐sharing [Se3Se7]2– units and nets from trigonal SnSe5 bipyramids. II crystallizes at ambient temperature in the tetragonal space group I41/amd (a = 2150,0(3) pm, c = 1174,4(2) pm, Z = 4) and contains adamantane like [Sn4Se10]4–‐cages. The UV‐VIS spectra of the selenidostannates demonstrate that the absorption edges red shift as the dimensionality of the compounds is increased.  相似文献   

17.
Reactions of phenanthroline (phen) and Er(NO3)3 · 5 H2O or Lu(NO3)3 · H2O in CH3OH/H2O yield [Ln2(phen)4(H2O)4(OH)2](NO3)4(phen)2 with Ln = Er ( 1 ), Lu ( 2 ). Both isostructural complex compounds crystallize in the triclinic space group P 1 (no. 2) with the cell dimensions: a = 11.257(2) Å, b = 11.467(2) Å, c = 14.069(2) Å, α = 93.93(2)°, β = 98.18(1)°, γ = 108.14(1)°, V = 1696.0(6) Å3, Z = 1 for ( 1 ) and a = 11.251(1) Å, b = 11.476(1) Å, c = 14.019(1) Å, α = 93.83(1)°, β = 98.27(1)°, γ = 108.27(1)°, V = 1689.0(3) Å3, Z = 1 for ( 2 ). The crystal structures consist of the hydroxo bridged dinuclear [Ln2(phen)4(H2O)4(OH)2]4+ complex cations, hydrogen bonded NO3 anions and π‐π stacking (phen)2 dimers. The rare earth metal atoms are coordinated by four N atoms of two phen ligands and four O atoms of two H2O molecules and two μ‐OH groups to complete tetragonal antiprisms. Via two common μ‐OH groups, two neighboring tetragonal antiprisms are condensed to a centrosymmetric dinuclear [Ln2(phen)4(H2O)4(OH)2]4+ complex cation. Based on π‐π stacking interactions and hydrogen bonding, the complex cations and (phen)2 dimers form 2 D layers parallel to (1 0 1), between which the hydrogen bonded NO3 anions are sandwiched. The structures can be simplified into a distorted CsCl structure when {[Ln2(phen)4(H2O)4(OH)2](NO3)4} and (phen)2 are viewed as building units.  相似文献   

18.
The pale‐rose compound [(μ‐C6H8O4)4/2Co(μ‐H2O)2Co(H2O)4] · 4 H2O was prepared from adipic acid and CoCO3 in aqueous solution. The crystal structure (monoclinic, P21/n (no. 14), a = 8.061(1), b = 15.160(2), c = 9.708(2) Å, β = 90.939(7)°, Z = 2, R = 0.0405, wR2 = 0.0971) consists of adipate bridged supramolecular [(μ‐C6H8O4)4/2Co(μ‐H2O)2Co(H2O)4] layers and hydrogen bonded H2O molecules. The cobalt atoms Co1 and Co2 are distorted octahedrally coordinated by the O atoms of two bridging trans‐H2O molecules and four bidentate adipate anions (Co1) and by the O atoms of two bridging trans‐H2O molecules and four monodentate H2O molecules (Co2), respectively. Equatorial bonds: d(Co1–O) = 2.048 Å (2 × ), 2.060 Å (2 × ); d(Co2–O) = 2.057 Å (2 × ), 2.072 Å (2 × ). Axial bonds: d(Co1–O) = 2.235 Å (2 × ); d(Co2–O) = 2.156 Å (2 × ).  相似文献   

19.
The new octadecanuclear Cu‐Ln complex, [Cu12Nd6(OH)24(betaine)16(NO3)3(H2O)10](NO3)[PF6]14·5H2O, was synthesized, which crystallizes in triclinic P1¯ space group, a = 18.649(6)Å, b = 20.363(7)Å, c = 19.865(7)Å, α = 116.61(2)°, β = 91.99(2)°, γ = 117.93(2)°, V = 5666(3)Å3. Its crystal structure features a [Cu12Nd6(OH)24(betaine)16(NO3)3(H2O)10]15+ core of pseudocubic Oh symmetry, with the six Nd ions positioned at the vertices of a regular octahedron and the twelve Cu ions located at the midpoints of the twelve octahedral edges. The Cu‐Nd metal framework may be viewed as a cuboctahedron, which is interconnected by twenty‐four μ3‐OH bridges that are each linked to one Nd ion and two Cu ions. In the centre of metal polyhedron, there is an encapsulated NO3 anion that exhibits a multi‐ coordinating mode.  相似文献   

20.
The Chloride Nitrate PrCl2(NO3) · 5 H2O with Cationic and Anionic Complexes according to [PrCl2(H2O)6][PrCl2(NO3)2(H2O)4] Green single crystals of PrCl2(NO3) · 5 H2O have been obtained from an aqueous solution of PrCl3 and Pr(NO3)3. The crystal structure [monoclinic, P2/c, Z = 4, a = 1228.8(3), b = 648.4(1), c = 1266.0(4) pm, β = 91.91(3)°] contains cationic and anionic Pr3+ complexes according to [PrCl2(H2O)6][PrCl2(NO3)2(H2O)4]. Both nitrate groups of the anionic complex act as bidentate chelating ligands. Hydrogen bonds are observed with water molecules as donors and chlorine as well as oxygen atoms as acceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号