首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 15 毫秒
1.
An improved microbond method, with a corresponding testing device, was developed to measure the interfacial shear strength (IFSS) between carbon fibers and epoxy resin. Compared to other methods, this proposed approach is both highly efficient and easy to operate. As a case study for this new method, we measured the IFSS between carbon fibers and epoxy resin. Although the average IFSS obtained was only 7.08 MPa, which is much lower than values documented in several previous studies, the displacement-load curves demonstrate the strong reliability of this method. The lower IFSS could be explained by the highly inert surface of the carbon fibers, which was highly graphitized and had no sizing treatment. Therefore, this method has high potential in applications for screening the sizing agents of carbon fibers or optimizing the surface sizing processes.  相似文献   

2.
BaTiO3/bismaleimide/epoxy/glass fiber reinforced composites were prepared using E-glass fiber (E-GF) and silane coated E-glass fiber (SC-EGF) separately as reinforcement. BaTiO3 nanoparticles were prepared by hydrothermal method. Results show that the addition of BaTiO3 nanoparticles has significant effects on the mechanical and dielectric properties of the composite. Both E-GF and SC-EGF reinforced BaTiO3/bismaleimide/epoxy composites with 2 wt percentages of BaTiO3 nanoparticles showed improved tensile strength, flexural strength and dielectric constant and those with 3% showed high dielectric strength indicating this composition is more adaptable for high voltage insulating applications. Dielectric constants and dielectric loss of the fabricated nanocomposites have been obtained at higher frequencies (in GHz) by using Vector Network Analyser at room temperature and was found to be highest for the BMI-Epoxy nanocomposite with 1% weight nanofiller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号