首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Collision-induced decompositions (CID) of protonated peptides were studied using a four-sector mass spectrometer. The collision gases employed were helium and argon. The CID spectra of several peptides covering the molecular mass region of 905–2465 u were recorded. These investigations established several previously unrecognized differences between the CID spectra obtained with helium and argon as collision gases. These can be summarized as follows: (1) Structurally significant and specific side chain fragmentations (dn f, wn f and vn, ion types) are greatly reduced or completely missing in the CID spectra obtained with helium as a collision gas compared to those obtained with argon. (2) As the peptide molecular mass increases, argon, which is heavier than helium, is increasingly more efficient than helium for generating fragment ions.  相似文献   

2.
Chemical ionization of two 1,4-dihydropyridines, lacidipine and its Z-isomer, and their corresponding pyridines in three different reagent gases and the collision-induced dissociation (CID) of their respective mass-selected protonated molecular ions in the collision energy range 10–200 eV were performed on a multiple quadrupole instrument. The weakness of the Breasted acid NH4+ as a protonating agent is clearly manifested in one of the ammonia positive-ion chemical ionization (CI+) mass spectra which displays the addition ion, [M + NH4]+, as the favoured reaction channel. The stereochemistry of the precursor molecules, the exothermicity of the protonation process and the threshold of certain dissociation channels as a function of the collision energy are among the arguments invoked to explain some of the observed differences between the CI+ mass spectra and the CID data of the different isomers investigated. In an attempt to present a more comprehensive study, some high-performance liquid chromatographic retention times and resolutions are also given.  相似文献   

3.
The product ion mass spectra of protonated and cationated peptides of relative molecular mass (RMM) 555–574 Da have been obtained by surface-induced dissociation of MH+ and [M + Cat] ions in a four-sector tandem mass spectrometer equipped with a specially designed collision cell. A linked scan of the electric and magnetic sector field strengths of the second mass spectrometer was used to transmit the fragment ions arising from collisions with a stainless steel surface. The resulting mass spectra contained broad metastable ion peaks produced by the dissociation of MH+ and [M + Cat]+ ions before the second magnetic sector, in the fourth field-free region of the instrument.  相似文献   

4.
Molecular weights of macrolide antibiotics can be determined from either (M + H)+ or (M + Met)+, the latter desorbed from alkali metal salt-saturated matrices. The ion chemistry of macrolides, as determined by tandem mass spectrometry (MS/MS), is different for ions produced as metallated than those formed as (M + H)+ species. An explanation for these differences is the location of the charge. For protonated species, the charge is most likely situated on a functional group with high proton affinity, such as the dimethylamino group of the ammo sugar. The alkali metal ion, however, is bonded to the highly oxygenated aglycone. As a result, the collision-activated dissociation spectra of protonated macrolides are simple with readily identifiable fragment ions in both the high and low mass regions but no fragments in the middle mass range. In contrast, the cationized species give complex spectra with many abundant ions, most of which are located in the high mass range. The complementary nature of the fragmentation of these two species recommends the study of both by MS/MS when determining the structure or confirming the identity of these biomaterials.  相似文献   

5.
A tetraquadrupole mass spectrometer with consecutive surface-induced dissociation/collisionally activated dissociation (SID/CAD) capability has been used to investigate the decompositional behaviour of bifunctional terpenes. SID and CAD yield similar daughter-ion spectra of protonated molecules generated by ammonia chemical ionization. These collision mass spectra of MH+ contain diagnostic daughter ions which can be used to distinguish diastereomeric terpenols. Pronounced stereochemical effects underlying specific decompositions of the ammonium adduct and protonated molecule forms of the bifunctional terpenes have been attributed to the formation of protonated molecules of lower stability produced via decomposition of [M + NH4]+. Evidence supporting the existence of such unusual protonated molecules formed via collision is given in the grand-daughter spectra of [M + NH4]+. Triple mass Spectrometry is shown to promote the Stereospecific formation and subsequent diagnostic decomposition of these singular protonated forms, thus improving the ability to differentiate the diastereomers.  相似文献   

6.
A simple and sensitive liquid chromatography tandem multiple‐stage mass spectrometry (HPLC/MS/MS) method suitable for bulk lisinopril analysis was developed, by which lisinopril and its RSS isomer were separated and differentiated. In the collision‐induced dissociation (CID) mass spectra of the [M + H]+ ions, the abundance of the fragment ion of m/z 246 for lisinopril was about two times higher than the ion of m/z 245; however, the former fragment ion was noted to be a little lower than the latter for RSS isomer at all collision energies. In the CID mass spectra of the [M + Li]+ ion, the abundance of the rearrangement ion of m/z 315 for the RSS isomer was about three times higher than that for lisinopril. Furthermore, the difference was supported by the results of energy‐resolved mass spectrometry (ERMS) in the test range of collision energies. Similar differences were also observed between the CID mass spectra of lisinopril and RSS isomer methylester, which indicated that the RSS isomer could be rapidly characterized by the CID mass spectra of both the protonated and lithium adduct ion. Elemental compositions of all the ions were confirmed by Fourier Transform ion cyclotron resonance ESI mass spectrometry (FT‐ICR‐ESI/MS). In addition, theoretical computations were carried out to support the experimental results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Infrared multiphoton dissociation (IRMPD) on a linear ion trap mass spectrometer is applied for the sequencing of small interfering RNA (siRNA). Both single-strand siRNAs and duplex siRNA were characterized by IRMPD, and the results were compared with that obtained by traditional ion trap-based collision induced dissociation (CID). The single-strand siRNA anions were observed to dissociate via cleavage of the 5′ P—O bonds yielding c- and y-type product ions as well as undergo neutral base loss. Full sequence coverage of the siRNA anions was obtained by both IRMPD and CID. While the CID mass spectra were dominated by base loss ions, accounting for ∼25% to 40% of the product ion current, these ions were eliminated through secondary dissociation by increasing the irradiation time in the IRMPD mass spectra to produce higher abundances of informative sequence ions. With longer irradiation times, however, internal ions corresponding to cleavage of two 5′ P—O bonds began to populate the product ion mass spectra as well as higher abundances of [a − Base] and w-type ions. IRMPD of siRNA cations predominantly produced c- and y-type ions with minimal contributions of [a − Base] and w-type ions to the product ion current; the presence of only two complementary series of product ions in the IRMPD mass spectra simplified spectral interpretation. In addition, IRMPD produced high abundances of protonated nucleobases, [G + H]+, [A + H]+, and [C + H]+, which were not detected in the CID mass spectra due to the low-mass cut-off associated with conventional CID in ion traps. CID and IRMPD using short irradiation times of duplex siRNA resulted in strand separation, similar to the dissociation trends observed for duplex DNA. With longer irradiation times, however, the individual single-strands underwent secondary dissociation to yield informative sequence ions not obtained by CID.  相似文献   

8.
Glycoconjugates, such as chromophore-labeled disaccharides and permethylated glycosphingolipids (GSL) were used for comparison of triple quadrupole and double focusing mass spectrometers in analysis of product ions. A profound effect of collision energy was observed in the product ion spectra of ceramide ions (fragment ions of permethylated GSL): more product ions were observed from a double focusing mass spectrometer. Besides collision energy, the structure of the analyte had a significant effect on the formation of product ions. Despite the fact that masses of protonated molecular ions (MH+) of permethylated GSL are significantly larger than their ceramide fragments, the low-energy and high-energy product ion spectra of MH+ are, in general, similar. In a double focusing mass spectrometer of reversed geometry, more metastable ions were observed in the first field free region (FFR) than in the second FFR. The metastable ions observed in the second FFR were similar to those observed in low-energy collision-induced dissociation (CID). Although a double focusing mass spectrometer is superior to triple quadrupole instrument for detection of product ions, the poor resolution in either the selection of precursor ion or in the product ion spectra can be a serious problem in analysis of a mixture with similar masses.  相似文献   

9.
Tetracycline antibiotics, tetracycline, chlortetracycline, demeclocycline, doxycycline, minocycline, methacycline, oxytetracycline, and anhydrotetracycline, are examined by electrospray ionization in a quadrupole ion trap. Studies were undertaken to evaluate the use of metal complexation as an alternative to conventional proton attachment. A variety of metal cationization processes, including attachment of Na+, Mg2+, Ca2+, Co2+, Ni2+, and Cu2+ were probed. Infrared multiphoton photodissociation and collisionally activated dissociation (CAD) were compared for generation of diagnostic fragmentation patterns of protonated and metal cationized tetracyclines. The photodissociation spectra provide a more informative signature, including more low mass ions that are not observed upon CAD. The metal complexes dissociate by pathways that are similar to those observed for the protonated molecules.  相似文献   

10.
Analytical Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA Ultraviolet matrix-assisted laser desorption can be used to enhance formation of [M + H]+, [M + Na]+, and [M + K)+ ions from small peptides for Fourier transform mass spectrometry (FTMS). In accord with laser desorption (LD) time-of-flight experiments, matrices such as nicotinic acid and 2-pyrazinecarboxylic acid exhibit strong enhancement effects (i.e., formation of abundant protonated and cationized molecules for the analyte with virtually no fragment ions) for 266 nm LD/FTMS, whereas pyrazinedicarboxylic acid provides no matrix enhancement at this wavelength. Both sinapinic acid and coumarin-120 provide strong matrix enhancement effects for the 355-nm LD of peptides. For the small peptides examined in this study, no significant differences in the abundance of fragment ions were observed between the 266- and 355-nm wavelengths. Matrix-assisted LD/FTMS is useful for the generation and characterization of ions corresponding to protonated and cationized molecules from virtually all biological compounds with molecular weights up to 2000. The lack of observation of biological ions with m/ z > 2500 may be related to inefficient trapping of these laser-desorbed ions or instrumental detection limitations of FTMS and is under further investigation.  相似文献   

11.
A flowing afterglow-tandem mass spectrometer (FA-TMS) was used to study a series of C5 unsaturated alcohols and isoprene. The analytical procedure was validated through collision induced dissociation (CID) experiments on proton hydrates. In the FA, reagent H3O+ ions were used to chemically ionize the alcohols under study and isoprene. Chemical ionization (CI) by H3O+ is widely used, especially in PTR-MS instruments, and produces a main peak at m/z 69 for all studied compounds, implying the impossibility to distinguish them by a simple quadrupole mass filter. The CID of these ions at m/z 69 resulted in daughter ions with the same masses but with different intensities depending on the organic compound, the collision energy and the Ar target gas pressure in the collision cell. From these observations, pentenols were easily distinguished from methylbutenols and 3-methyl-3-buten-1-ol from the other compounds. CID experiments were also performed on the protonated alcohol, which is only a stable ion for 1-penten-3-ol, 2-methyl-3-buten-2-ol and 3-methyl-3-buten-1-ol, showing different CID patterns as a function of the collision energy. The coupling between a FA reactor and a TMS has proven to be a valuable approach to identify C5 unsaturated alcohols and isoprene.  相似文献   

12.
Chemical ionization mass spectra have been recorded for the title compounds having the four pentose configurations and the eight hexose configurations, with ammonia and isobutane as the reagent gases. The ammonia mediated spectra display [NH4]+ capture ions with successive loss of one or two molecules of methanol (acetals) or ethanethiol (dithioacetals), whereas when isobutane was the reagent gas, loss from the protonated acetals of one or two molecules of methanol and of water, and loss from the protonated dithioacetals of one or two molecules of ethanethiol and of water were featured. Significant differences in the ion intensities as a function of stereochemistry in the precursor are noted, and are discussed in terms of the ease of formation of cyclic fragment ions.  相似文献   

13.
Details of the optimization of the collision-induced dissociation (CID) process, using a collision cell on a matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometer, are described using poly(ethylene glycol) 1000 (PEG 1000) as a model analyte. The effects of collision gas identity (helium, air, and argon), as well as collision gas pressure, on the resulting MS/MS data were investigated. With PEG 1000, helium was found to give the best results with respect to signal-to-noise (S/N) ratio. The optimum pressure for each gas was found to be in the range where the precursor ion signal was attenuated to approximately 30-50% for helium and 40-60% for argon. The effect of cation choice (Li, Na, and K) on the CID of PEG was also studied. CID spectra were produced for each, but PEG cationized with lithium was found to produce the spectra with the highest S/N ratio. The MALDI-TOF CID spectra that were generated for PEG were compared with the high-energy and low-energy MS/MS spectra obtained from a sector mass spectrometer and from a triple quadrupole mass spectrometer, respectively. The results observed for PEG confirm that CID on a MALDI-TOF mass spectrometer is a high-energy MS/MS technique.  相似文献   

14.
The collision-induced dissociation (CID) mass spectra of protonated cocaine and protonated heroin have been measured using a triple quadrupole mass spectrometer at 50 eV ion/neutral collision energy for protonated molecules prepared by different protonating agents. The CID mass spectra of protonated cocaine using H+(H2O)n, H+(NH3)n and H+((CH3)2NH)n as protonating agents are essentially identical and it is concluded that, regardless of the initial site of protonation, the fragmentation reactions occurring on collisional activation are identical. By contrast, protonated heorin prepared with H+(H2O)n and H+(NH3)n as protonating agents show substantial differences. That formed by reaction of H+(H2O)n shows a much more abundant peak corresponding to loss of CH3CO2H. From a comparison with model compounds, and from a consideration of the three-dimensional structure of heroin, it is concluded that with H+(H2O)n as protonating agent significant protonation occurs at the acetate group attached to the alicyclic ring, leading to acetic acid loss on collisional activation, but that reaction of H+(NH3)n leads to protonation at the nitrogen function. The proton attached to nitrogen cannot interact with the acetate group and, consequently, the probability of loss of acetic acid on collislional activation is greatly reduced.  相似文献   

15.
A new tandem time‐of‐flight mass spectrometer with an electrospray ionization ion source ‘ESI‐TOF/quadTOF’ was designed and constructed to achieve the desired aim of structural elucidation via high‐energy collision‐induced dissociation (CID), and the simultaneous detection of all fragment ions. The instrument consists of an orthogonal acceleration‐type ESI ion source, a linear TOF mass spectrometer, a collision cell, a quadratic‐field ion mirror and a microchannel plate detector. High‐energy CID spectra of doubly protonated angiotensin II and bradykinin were obtained. Several fragment ions such as a‐, d‐, v‐ and w‐type ions, characteristic of high‐energy CID, were clearly observed in these spectra. These high‐energy CID fragment ions enabled confirmation of the complete sequence, including leucine–isoleucine determinations. It was demonstrated that high‐energy CID of multiply protonated peptides could be achieved in the ESI‐TOF/quadTOF. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Low energy collision induced dissociation (CID) spectra were measured by a triple stage quadrupole mass spectrometer for the [MH]+ ions of diethyl and dimethyl esters of maleic, fumaric, citraconic and mesaconic acids. A very high degree of stereospecificity was observed for the geometrically isomeric diethyl esters. The cis esters give rise to very abundant [MH? EtOH]+ and [MH? EtOH? C2H4]+ ions, while the trans isomers exhibit very abundant [MH? C2H4]+ and [MH? 2 C2H4]+ ions. The highly stereospecific processes indicate that the double bond configuration is retained in the protonated species under the conditions of the experiment.  相似文献   

17.
Proton-bound heterodimers of substituted benzamides 1–15 and N,N-dimethyl benzamides 16–30, respectively, with a series of reference bases were generated under chemical ionization conditions. Their dissociation into the protonated amide AH+ and protonated reference base BH+ was studied by metastable ion techniques and by collision-induced dissociation (CID) to examine substituent effects on the proton affinity (PA) of the benzarnides and to elucidate some aspects of the dissociation dynamics of proton-bound clusters. The PAs of the substituted benzarnides were determined by bracketing the amide by a pair of reference bases to give rise to more and less abundant signals of the protonated base in the mass-analyzed ion kinetic energy (MIKE) spectra of the proton-bound heterodimers. The substituent effects observed agree with O-protonation in both the primary and the tertiary benzamides. However, the susceptibility of the benzamide to polar substituent effects is remarkably small, which indicates a “resonance saturation”), of the amide group. The relative abundances of AH+ and BH+ in the MIKE and collisional activation (CA) mass spectra depend strongly on the pressure of the collision gas during CID, and in certain cases a reversal of the relative abundances with increasing pressure that favors the formation of BH+ from a less basic reference base is observed. Although this effect underlines the limited possibilities of the “kinetic method” for PA determination by CID of proton-bound heterodimers, it uncovers important kinetic effects during the dissociation of proton-bound heterodimers and of proton transfer reactions in the gas phase.. In the case of the protonated amide clusters, the observed intensity effects in the CA mass spectra are explained by a double-well potential energy surface caused by solvation of the protonated base by the polar amide in the protonated heterodimer.  相似文献   

18.
Several types of artifacts were shown to be present in 4-sector tandem collision-induced dissociation (CID) mass spectra. In CID spectra of protonated peptides produced by liquid secondary-ion mass spectrometry (LSIMS), peaks corresponding to successive losses of matrix molecules from the precursor ion were observed. In addition, peaks corresponding to MH+ ions of smaller peptides that were also present in the sample/matrix mixture in greater abundance than the selected precursor ion were observed. Both of these types of artifact peaks were shown to originate from the 'peak-at-every-mass' chemical noise at the same nominal mass as that selected by the first 2 sectors (MS1). These noise ions are transmitted through to the collision cell and produce fragments that are analysed and detected in the next 2 sectors (MS2). A second, unrelated, kind of artifact was found to be due to decompositions in the second field-free region of MS2 in an EBEB geometry machine. These artifacts, which are detectable over only a very limited mass range when using a conventional single-point detector, can be present over a much greater mass range when an array detector is used and when the collision cell is floated above ground potential. A clear understanding of the origins of all peaks in a CID spectrum is important in order to have a firm foundation for interpretation, manual or computer-aided, of the spectra of unknown compounds.  相似文献   

19.
Five glucosylceramides (GlcCers) were isolated by reversed phase high‐performance liquid chromatography from the MeOH extracts of a marine sponge, Haliclona (Reniera) sp., collected from the coast of Ulleung Island, Korea, and analyzed by fast atom bombardment mass spectrometry (FAB–MS) in positive‐ion mode. FAB‐mass spectra of these compounds included protonated molecules [M + H]+ and abundant sodiated molecules [M + Na]+ from a mixture of m‐NBA and NaI. The structures of these GlcCers, which were similar, were elucidated by FAB‐linked scan at constant B/E. To find diagnostic ions for their characterization, the GlcCers were analyzed by collision‐induced dissociation (CID) linked scan at constant B/E. The CID‐linked scan at constant B/E of [M + H]+ and [M + Na]+ precursor ions resulted in the formation of numerous characteristic product ions via a series of dissociative processes. The product ions formed by charge‐remote fragmentation provided important information for the characterization of the fatty N‐acyl chain moiety and the sphingoid base, commonly referred to as the long‐chain base. The product ions at m/z 203 and 502 were diagnostic for the presence of a sodiated sugar ring and β‐D ‐glucosylsphinganine, respectively. For further confirmation of the structure of the fatty N‐acyl chain moiety in each GlcCer, fatty acid methyl esters were obtained from the five GlcCers by methanolysis and analyzed by FAB–MS in positive‐ion mode. On the basis of these dissociation patterns, the structures of the five GlcCers from marine sponge were elucidated. In addition, the accurate mass measurement was performed to obtain the elemental composition of the GlcCers isolated from marine sponge. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
A mass spectrometric study of three N-oxides, quinoline N-oxide, and the synthetic antibiotics carbadox and olaquindox, was carried out with a hybrid quadrupole/time-of-flight (TOF) mass spectrometer coupled with electrospray (ES) and atmospheric pressure chemical ionization (APCI) sources. The full scan mass spectra of the N-oxides obtained with ES are similar to those obtained with APCI, and the characteristic fragment ions corresponding to [M+H−O]+√ were observed in the full scan mass spectrum of each N-oxide examined. The protonated molecule of each N-oxide was subjected to collision-induced dissociation (CID) and accurate mass measurements were made of each fragment ion so as to determine its elemental composition. Fragment ions generated at enhanced cone voltages upstream of the first mass-resolving element were subjected to CID so as to identify the direct product ion–precursor ion relationship. Plausible structures have been proposed for most of the fragment ions observed. Elimination of OH√ radicals generated from the N→O functional group is a characteristic fragmentation pathway of the N-oxides. The expulsion of radicals and small stable molecules is accompanied by formation and subsequent contraction of heterocyclic rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号