首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 618 毫秒
1.
Preparation and Spectroscopical Characterization of Di(acido)phthalocyaninatorhodates(III) Triethylendiaminorhodiumiodide reacts quickly and completely with boiling phthalodinitrile precipitating ?rhodiumphthalocyanine”?, which is purified and dissolved in alkaline media as di(hydroxo)phthalocyaninatorhodate(III). Acidification in the presence of halides or pseudohalides yields less soluble acidophthalocyaninatorhodium reacting with tetra-n-butyl-ammonium(pseudo)halide to give (blue)green tetra-n-butyl-ammoniumdi(acido)phthalocyaninatorhodate(III), (nBu4N)[Rh(X)2Pc2?] (X = Cl, Br, I, N3, CN, NCO, SCN, SeCN). The asym. Rh? X-stretching vibration (vas(RhX)) is observed in the f.i.r. at 290 (X = Cl), 233 (Br), 205 (I), 366 (N3), 347 (CN), 351 (NCO), 257 (SCN) and 214 cm?1 (SeCN). vs(RhI) is the only sym. Rh? X-stretching vibration excited at 131 cm?1 in the Raman spectrum. The m.i.r. and resonance Raman spectra are typical for hexacoordinated phthalocyaninatometalates(III). The influence of the axial ligands is very small. The frequency of the stretching vibrations of the pseudohalo-ligands are as expected (in the case of the ambident ligands the bonding atom is named first): vas(NN) at 2006 and vs(NN) at 1270 cm?1 (N3); vas(CN) at 2126 (CN), 2153 (NCO), 2110 (SCN) and 2116 cm?1 (SeCN). The characteristic π–π*-transitions of the Pc2?-ligand dominate the UV-vis spectra. The splitting of the Q and N region is discussed and the weak absorbance at ca. 22 kK is assigned to a n–π*-transition.  相似文献   

2.
High Spin Manganese(II) Phthalocyanines: Preparation and Spectroscopical Properties of Acidophthalocyaninatomanganate(II) Acidophthalocyaninatomanaganese(III) is reduced by boranate, thioacetate or hydrogensulfide to yield acidophthalo-cyaninatomanganate(II) ([Mn(X)Pc2?]?; X = Cl, Br, NCO, NCS) being isolated as tetra(n-butyl)ammonium salt. In the cyclovoltammogram of [Mn(NCO)Pc2?]? the halv-wave potential for the redoxcouple MnII/MnIII is at ?0.13 V, that of the first ring reduction at ?0.99 V. The magnetic moments are indicative of high-spin 6A1 ground states: μMn = 5.84 (NCO), 5.78(Cl), 5.65 (Br), 5.68 μB (NCS). A Curie-like temperature dependence of μMn is observed in the region 300–30 K. Below 30 K an increase in μMn occurs due to weak intermolecular ferromagnetic coupling. The ESR spectra confirm the S = 5/2 ground state with a strong g = 6 resonance observed (AMn = 80 G) as expected for an axially distorted ligand-field. Besides the typical π-π* transitions of the Pc2?-ligand several weak bands are observed in the Uv-vis-n.i.r. spectra at ca. 7.5, 9.1, 14.0 and 19.0 kK that are assigned to trip-multiplet transitions. In resonance with the band at 19.0 kK the Mn? X stretching vibration (v(MnX)) is resonance Raman enhanced: X = NCO: 319, Cl: 286, SCN: 238, Br: 202 cm?1. These vibrational frequencies are confirmed by the f.i.r. spectra. In the case of the thiocyanato-complex probably both forms of bonding of the ambident NCS-ligand are present (v(Mn? NCS): 274 cm?1). The frequencies of the vibrations of the inner (CN)8 ring are reduced by up to 20 cm?1 as compared with those of low spin MnII phthalocyanines.  相似文献   

3.
Monomeric and Dimeric Chromium(III) Phthalocyanines: Synthesis and Properties of Hydroxopyridinophthalocyaninatochromium(III) and μ-Oxodi(pyridinophthalocyaninatochromium(III)) Heating of ?[Cr(OH)Pc2?]”? in pyridine (Py) gives the paramagnetic (T = 273 K) complexes [Cr(OH)(Py)Pc2?] (μCr = 3.84 μB) and [(Cr(Py)Pc2?)2O] (μCr = 1.24 μB) by consecutive substitution and condensation reactions. The UV-VIS spectra are characterized by the typical B, Q, and N regions of the Pc2? ligand being shifted hypsochromically for the dimer with respect to the monomer due to excitonic coupling (1.5 kK). Regions of weak absorbance between 8 and 13 resp. 19 kK are assigned to trip-quartet transitions for both complexes. A weak band at 870 cm?1 in the FIR/MIR spectra is assigned to vas(Cr? O? Cr). In the resonance Raman(RR) spectra v(Cr? O) at 514 cm?1 resp. vs(Cr? O? Cr) at 426 cm?1 is selectively enhanced. Further strong RR-lines of the μ-Oxo dimer at 110 and 631 cm?1 are assigned to a (Py? Cr? O)- resp. internal pyridine deformation of a1g symmetry. An assignment as 2vas(Cr? O? Cr) is proposed for the remarkable RR line at 1740 cm?1.  相似文献   

4.
Preparation, Properties and Electronic Raman Spectra of Bis(chloro)-phthalocyaninatoferrate(III), -ruthenate(III) and -osmate(III) Bis(chloro)phthalocyaninatometalates of FeIII, RuIII and OsIII [MCl2Pc(2-)]?, with an electronic low spin ground state are formed by the reaction of [FeClPc(2-)] resp. H[MX2Pc(2?)] (M = Ru, Os; X = Cl, I) with excess chloride in weakly coordinating solvents (DMF, THF) and are isolated as (n-Bu4N) salts. The asym. M? Cl stretch (νas(MCl)) is observed in the f.i.r. at 288 cm?1 (Fe), 295 cm?1 (Ru), 298 cm?1 (Os), νas(MN) at 330 cm?1 (Fe), 327 cm?1 (Ru), and 317 cm?1 (Os); only νs(OsCl) at 311 cm?1 is resonance Raman (r.r.) enhanced with blue excitation. The m.i.r. and FT-Raman spectra are typical for hexacoordinated phthalocyanines of tervalent metal ions. The UV-vis spectra show besides the characteristic π-π* transitions (B, Q, N, L band) of the Pc ligand a number of extra bands at 12–15 kK and 18–24 kK due to trip-doublet and (Pc→M)CT transitions. The effect of metal substitution is discussed. The r.r. spectra obtained by excitation between the B and Q band (λ0 = 476.5 nm) are dominated by the intraconfigurational transition Γ7 Γ 8 arrising from the spin-orbit splitting of the electronic ground state for FeIII at 536 cm?1, for RuIII at 961 cm?1 and OsIII at 3 028 cm?1. Thus the spin-orbit coupling constant increases very greatly down the iron group: FeIII (357 cm?1)< RuIII (641 cm?1)< OsIII (2 019 cm?1). The Γ7 Γ 8-transition is followed by a very pronounced vibrational finestructure being composed in the r.r. spectra by the coupling with νs(MCl), δ(MClN) and the most intense fundamental vibrations of the Pc ligand. In absorption only vibronically induced transitions are observed for the Ru and Os complex at 1 700-2800 rsp. 3100-5800 em?1 instead of the 0-0 phonon transitions. The most intense lines are attributed to combinations of the intense odd vibrational mo-des at ≈ 740 and 1120 cm?1 with ν5(MCI), δ(MClN).  相似文献   

5.
Preparation and Spectroscopical Properties of Nitridophthalocyaninatorhenium(V) Nitridophthalocyaninatorhenium(V) ([ReNPc2?]) is prepared by the reaction of dirheniumheptoxide with ammoniumiodide in molten 1,2-dicyano-benzene. The diamagnetic complex is chemically und thermically extremely stable. In the Uv-vis spectra the typical π-π*-transitions of the Pc2? ligand are observed. Extra bands in the solid state spectrum are due to strong excitonic coupling of ca. 2.8 kK. In the resonance Raman spectra the intensity of the Re≡N stretching vibration (v(Re≡N)) at 969 cm?1 is selectively enhanced by laser excitations above 19.0 kK. v(Re≡N) is a dominant m.i.r. absorption at 976 cm?1.  相似文献   

6.
Ruthenium(III) Phthalocyanines: Synthesis and Properties of Di(halo)phthalocyaninato(1?)ruthenium(III) Di(halo)phthalocyaninato(1?)ruthenium(III), [Ru(X)2Pc?] (X = Cl, Br, I) is prepared by oxidation of [Ru(X)2Pc2?]? (Cl, Br, OH) with halogene in dichloromethane. The magnetic moment of [Ru(X)2Pc?] is 2,48 μB (X = Cl) resp. 2,56 μB (X = Br) in accordance with a systeme of two independent spins (low spin RuIII and Pc?: S = 1/2). The optical spectra of the red violet solution of [Ru(X)2Pc?] (Cl, Br) are typical for the Pc? ligand with the “B” at 13.5 kK, “Q1” at 19.3 kK and “Q2 region” at 31.9 kK. Sytematic spectral changes within the iron group are discussed. The presence of the Pc? ligand is confirmed by the vibrational spectra, too. Characteristic are the metal dependent bands in the m.i.r. spectra at 1 352 and 1 458 cm?1 and the strong Raman line at 1 600 cm?1. The antisymmetric Ru? X stretch (vas(Ru? X)) is observed at 189 cm?1 (X = I) resp. 234 cm?1 (X = Br). There are two interdependent bands at 295 and 327 cm?1 in the region expected for vas(Ru? Cl) attributed to strong interaction of vas(Ru? Cl) with an out-of-plane Pc? tilting mode of the same irreducible representation. Only the symmetric Ru? Br stretch at 183 cm?1 is selectively enhanced in the resonance-Raman(RR) spectra. The Raman line at 168 cm?1 of the diiodo complex is assigned to loosely bound iodine. The broad band at 978 cm?1 in the RR spectra of the dichloro complex is due to an intraconfigurational transition within the electronic ground state of low spin RuIII split by spin orbit coupling.  相似文献   

7.
NiH3IO6 · 6 H2O — Crystal Structures and Vibrational Spectra The crystal structure of NiH3IO6 · 6 H2O has been determined by X-ray single-crystal diffraction (Pc, Z = 2, a = 516.74(9), b = 981.5(2), c = 1052.5(2) pm, β = 116.496(8)°) on the basis of 4169 unique reflections (R = 1.96%). The structure is built up of distorted Ni(H2O)62+ and H3IO62? octahedra linked by hydrogen bonding. IR and Raman spectra of both the title compound and isostructural MgH3IO6 · 6 H2O as well as of deuterated specimens are given. There are up to 14 different OH(OD) modes in the spectra of isotopically dilute samples due to the 15 different hydrogen positions of the structure. The internal modes of the meridional H3IO62? ions (pseudo C2v symmetry) are discussed with respect to that double T-shaped entity, which gives rise to only two instead of 3I? O, I? O(H), and OH stretches in the IR and Raman spectra, i.e. the same as for facial (C3v) structured ions.  相似文献   

8.
Lattice Vibration Spectra. LXIII. Be(IO3)2 · 4 H2O, a Hydrate with Unusual Bonding and Lattice Dynamics The IR and Raman spectra (4000–50 cm?1) of Be(IO3)2 · 4 H2O and of deuterated specimens are recorded at 90 and 300 K and discussed in terms of the unusual relations of the masses of the atoms involved and the large polarization power of the beryllium ions. Thus, the translatory modes of the Be2+ ions (BeO4 skeleton vibrations), the librations of the H2O molecules, and the internal vibrations of the IO3? ions in the spectral regions of 300–400 and 600–1000 cm?1 couple and coincide producing unusual vH/vD isotopic ratios of partly < 1. The H-bond donor strengths of the water molecules is so much increased (due to the very large ionic potential of Be2+ ions, viz. 49 e nm?1) (synergetic effect) that the H-bonds formed are similar in strength as those in hydrates of hydroxides with the very strong H-bond acceptor group OH? (vOD of matrix isolated HDO molecules 2 074 and 2 244 (H2O I) and 2 206 and 2 349 cm?1 (H2O II))  相似文献   

9.
The Molecule S?GeCl2. Matrix IR Investigation and Ab initio SCF Calculation Molecular S?GeCl2 is found in a matrix reaction between the high-temperature molecule Ge?S and Cl2. A structure analog to that of phosgene can be derived from the isotopical shifts (70Ge/72Ge/73Ge/74Ge/76Ge and 35Cl/37Cl) within the IR spectra. The normal coordinate analysis results for the Ge?S force constant a value of 4.21 mdyn/Å. The spectroscopic results are confirmed by ab initio SCF calculations.  相似文献   

10.
Lattice Vibration Spectra. LXXVI. On Basic Copper Salts — Crystal Structure, IR and Raman Spectra of Cu2(OH)3NO2 Single-crystal X-ray as well as IR and Raman data of Cu2(OH)3NO2 are presented and discussed with respect to an order-disorder (OD) phase transition and the strength of hydrogen bonds. Cu2(OH)3NO2 crystallizes pseudosymmetrically in the monoclinic space group P21/m (Z = 2, a = 562.22(4), b = 605.94(5), c = 663.55(4) pm and β = 95.415(5)°) forming a layered structure of edge-connected, elongated CuO6 octahedra (final R value 2.5% for 1047 symmetry averaged reflections with I ≥ 2.5 μ1). The NO2? ions are on a split position with dynamic disordering at ambient temperature. On temperature lowering the disorder is frozen out with a symmetry decrease to space group P21. The disorder of the NO2? ions causes four different arrangements of OH(2)? with different strengths of the H…O hydrogen bonds present OD stretching modes in the spectra of isotopically dilute samples 2628, 2535, 2435, and 2343 cm?1 at 90 K. The OH(1)? ions form weak H…N H-bonds to the lone-pair of the nitrogen atoms of the NO2? ions (vOD 2563 cm?1).  相似文献   

11.
Dimeric Low-Spin Iron(III) Phthalocyanines: Synthesis and Properties of Ferromagnetically Coupled μ-Oxodi(acidophthalocyaninatoferrates(III)) μ-Oxodi(phthalocyaninatoiron(III)) ([(FePc2?)2O]) dissolved in pyridine reacts with different Tetra(n-butyl)ammonium salts yielding partly solvated Di(tetra(n-butyl)ammonium)-μ-oxodi(acidophthalocyaninatoferrates(III)) ((nBu4N)2[(Fe(X)Pc2?)2O]; X? = CN?, Im?, NCO?, NCS?, NO2?). The uv-vis. spectra show the typical B, Q, N and L regions of the Pc2? ligand scarcely influenced by the axial ligands X. In comparison with [(FePc2?)2O] mainly the B region is hypsochromically shifted due to strong excitonic coupling (> 3 kK). Two regions of weak absorbance at ca. 7.6–8.7 and 11.4–13.0 kK are assigned to trip-doublet transitions. The m.i.r. and resonance Raman spectra are dominated by the fundamental vibrations of the Pc2? ligand being characteristic for hexa-coordinated low-spin FeIII phthalocyanines. Internal vibrations of the ambident axial ligands X are in accordance with the proposed Fe? X bond. The i.r. active asym. (Fe? O? Fe) stretching vibration is observed in the region 631–690 cm?1. Fe? X stretching vibrations are only present in the f.i.r. spectra. The magnetic properties and Mößbauer spectra are interpreted in terms of an electronic model which assumes that a S′ = 1 ground state arises from strong ferromagnetic coupling of the low-spin FeIII centres. Both spin-Hamiltonian and ligand-field models have been employed to fit the variable temperature susceptibility data. These low-spin μ-oxo FeIII dimers are rare compared to the many known examples of coupled high-spin species including the parent, [(FePc2?)2O].  相似文献   

12.
New Rhenium Complexes Containing Trichalcogenido and Tetrachalcogenido Chelate Ligands The reactions of Cp*ReCl4 with polychalcogenide salts such as Na2S4 or (NEt4)2Se6 lead initially to the violet trichalcogenido chelate complexes Cp*ReCl2(E3) (E = S ( 3a ), Se ( 3b )) which, due to their functional chloro ligands, can be used as intermediates for further reactions. Upon hydrolysis in moist solvents or aminolysis with tert. butylamine 3a, b are converted into the tetrachalcogenido chelate complexes Cp*Re(O)(E4) (E = S ( 4a ), Se ( 4b )) and Cp*Re(NtBu)(E4) (E = S ( 5a ), Se ( 5b )), respectively. X-Ray structure analyses were carried out for the three mononuclear cyclo-oligoselenido compounds 3b–5b . It appears that the size of the Se2?n chelate ring (n = 3 or 4) essentially depends on steric factors within the coordination sphere of rhenium.  相似文献   

13.
Preparation and Crystal Structure of Tetraphenylphosphonium Hexathiocyanatorhodate(III), [P(C6H5)4]3[Rh(SCN)6] By treatment of RhCl3 · n H2O with KSCN in water a mixture of the linkage isomers [Rh(NCS)n(SCN)6–n]3?, n = 0–2 is formed which is separated by ion exchange chromatography on diethylaminoethyl cellulose. The X-ray structure determination on a single crystal of [P(C6H5)4]3[Rh(SCN)6] (monoclinic, space group C1c1, a = 13.620(5), b = 22.929(13), c = 22.899(9) Å, β = 98.55(3)°, Z = 4) confirms the coordination of all ligands via S with the middle Rh? S distance of 2.372 Å and Rh? S? C angles of 109°. The SCN groups are nearly linear with 175° and averaged bondlengths S? C 1.63 and C? N 1.14 Å. The crystal lattice is build up by layers of complex anions and voluminous cations with no specific interactions but which are closely connected by thiocyanate ligands and phenyl rings.  相似文献   

14.
Preparation of the Iminium Salts CF3? NX?CF2+MF6? (X = CH3, F and M = As, Sb) and CF3? NCl?CF2+ AsF6? The preparation of the iminiumsalts CF3? NX?CF2+ MF6? (X = CH3, F and M = As, Sb) and CF3? NCl?CF2+ AsF6? is reported. The salts were characterized by NMR and infrared spectroscopy. CF3? NCH3?CF2+MF6? decompose into MF5 and (CF3)2NCH3.  相似文献   

15.
Chalcogenolates and their Derivatives. I. Syntheses and Properties of Ionic Chalcogenophenolates The syntheses and properties of ionic chalcogenophenolates are described. Using liquid ammonia as solvent the alkali chalcogenophenolates M[EPh] (M = Na, K; E = Se, Te; Ph = C6H5) have been synthesized via reduction of the diphenyl dichalcogenides with alkali metals. Similarly, the tetraphenylphosphonium chalcogenophenolates [Ph4P][EPh] (E = S, Se, Te) have been obtained by reacting alkali chalcogenophenolates with tetraphenylphosphonium chloride.  相似文献   

16.
Tris(trimethylsilyl)methaneselenenyl Halides and Chalcogenides . Ditrisyldiselenide ( 1 ) (trisyl = TSi = (Me3Si)3C) reacts with SOCl2, Br2 and I2 to provide trisylselenenyl halides TSiSeX ( 2 : X = Cl; 3 : X = Br, 4 : X = I). Insertion of S and Se into the Se? Se bond of 1 to yield (TSiSe)2Sn ( 5 : n = 1; 6 : n = 2) and (TSiSe)2Sen ( 7 : n = 1; 8 : n = 2) was catalysed by iodine. 5 was isolated in pure state and examined by X-ray diffraction. Triselenide 7 can be cleaved by I2 in CS2 to give 4 and Se2I2 ( 9 ). From 2 with Me3SiCN and Me3SiNCS, the new selenenyl pseudohalides TSiSeCN ( 10 ) and TSiSeSCN ( 11 ) were prepared. The compounds were characterised by 1H, 13C- and 77Se n.m.r. spectra.  相似文献   

17.
Synthesis and Spectroscopical Characterization of Di(halo)phthalocyaninato(1–)rhodium(III), [RhX2Pc1?] (X = Cl, Br, I) Bronze-coloured di(halo)phthalocyaninato(1–)-rhodium(III), [RhX2Pc1?] (X = Cl, Br) and [RhI2Pc1?] · I2 is prepared by oxidation of (nBu4N)[RhX2Pc2?] with the corresponding halogene. Irrespective of the halo ligands, two irreversible electrode reactions due to the first ringreduction (ER = ?0,90 V) and ringoxidation (EO = 0,82 V) are present in the cyclovoltammogram of (nBu4N)[RhX2Pc2?]. The optical spectra show typical absorptions of the Pc1?-ligand at 14.0 kK and 19.1 kK. Characteristic vibrational bands are at 1 366/1 449 cm?1 (i. r.) and 569/1 132/1 180/1 600 cm?1 (resonance Raman (r. r.)). The antisym. (Rh? X)-stretching vibration is observed at 294 cm?1 (X = Cl), 240 cm?4 (Br) and 200 cm?1 (I). Only the sym. (Rh? I)-stretching vibration at 133 cm?1 is r. r. enhanced together with a strong line at 170 cm?1, which is assigned to the (I? I)-stretching vibration of the incorporated iodine molecule. Both modes show overtones and combinationbands.  相似文献   

18.
Synthesis and Spectroscopic Characterization of [Rh(SeCN)6]3– and trans ‐[Rh(CN)2(SeCN)4]3–, Crystal Structure of (Me4N)3[Rh(SeCN)6] Treatment of RhCl3 with KSeCN in acetone yields a mixture of selenocyanato‐rhodates(III), from which [Rh(SeCN)6]3– and trans‐[Rh(CN)2(SeCN)4]3– have been isolated by ion exchange chromatography on diethylaminoethyl cellulose. The X‐ray structure determination on a single crystal of (Me4N)3[Rh(SeCN)6] (trigonal, space group R3, a = 14.997(2), c = 24.437(3) Å, Z = 6) reveals, that the compound crystallizes isotypically to (Me4N)3[Ir(SCN)6]. The exclusively via Se coordinated selenocyanato ligands are bonded with the average Rh–Se distance of 2.490 Å and the Rh–Se–C angle of 104.6°. In the low temperature IR and Raman spectra the metal ligand stretching modes ν(RhSe) of (n‐Bu4N)3[Rh(SeCN)6] ( 1 ) and trans‐(n‐Bu4N)3[Rh(CN)2(SeCN)4] ( 2 ) are in the range of 170–250 cm–1. In 2 νas(CRhC) is observed at 479 cm–1. The vibrational spectra are assigned by normal coordinate analysis based on the molecular parameters of the X‐ray determination. The valence force constants are fd(RhSe) = 1.08 ( 1 ), 1.10 ( 2 ) and fd(RhC) = 3.14 mdyn/Å ( 2 ). fd(RhS) = 1.32 mdyn/Å is determined for [Rh(SCN)6]3–, which has not been calculated so far. The 103Rh NMR resonances are 2287 ( 1 ), 1680 ppm ( 2 ) and the 77Se NMR resonances are –32.7 ( 1 ) and –110.7 ppm ( 2 ). The Rh–C bonding of the cyano ligand in 2 is confirmed by a dublett in the 13C NMR spectrum at 136.3 ppm.  相似文献   

19.
Lattice Vibration Spectra. LXXI Hydrogen Bonding and Synergetic Effect in Solid Amides: a Case Study for NaAl(NH2)4 IR and Raman spectra (4000 - 200 cm?1, 90 K and 300 K) of NaAl(NH2)4 and of deuterated samples are recorded and discussed with respect to the bonding of NH2? ions in condensed phases compared to that of H2O molecules and OH?-ions. The bands observed are assigned to the internal vibrations and librations of the NH2? ions and skeleton vibrations of the distorted tetrahedral Al(NH2)4? units (breathing vibration v1, 572 cm?1). Owing to the high charge density of the Al3+ ions the NH-stretching modes are shifted to higher wavenumbers by as many as 200 cm?1 compared to those of free amide ions. Furthermore the H-bond donor strenght of the NH2? ions is so much enlarged (synergetic effect) that weak, unusally long (d( …? N) > 360 pm) NH2 …? NH2 hydrogen bonds are formed. These H-bonds share layers of vertex connected Al(NH2)4 and Na(NH2)4 tetrahedra within the structure.  相似文献   

20.
Crystal Structure of Tris(N,N-Diethyl-N′-benzoylthioureato) Rhodium(III) Rh(C12H15N2OS)3 crystallizes in the trigonal space group P-3. The cell parameters are a = 16.660(2), c = 8.479(1) Å and Z = 2. The structure was solved with Patterson and direct methods and refined to a final R-value of 7.05%. RhIII is octahedrally coordinated to three N,N-Diethyl-N′ -benzoylthiourea molecules, which are bidentately coordinated through their oxygen and sulfur atoms. The Rh? S and Rh? O bond lengths are 2.284 Å and 2.033 Å, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号