首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Addition of NOBF4 to fac-[PPN][Fe(CO)3(TePh)3] in THF at ambient temperature results in formation of Fe2(μ-TePh)2(NO)4l Fe2(?TePh)2(CO)6 and organic products. Methylation of fac-[PPN][Fe(CO)3- (TePh)3] by Mel or [Me3O][BF4] leads to the known dimer Fe2(μ.-TePh)2(CO)6 and organic products. Fe2(μ-TePh)2(NO)4 crystallizes in the orthorhombic space group P bca, with a = 12.701(5) Å, b = 6.7935(16) Å, c = 21.299(9) Å, V = 1837.8(11) Å3, and Z = 4. The core geometry of Fe2(μ-TePh)2(NO)4 is best described as a Fe2Te2 planar rhombus with Te-Fe-Te bond angle 112.09(4)°. A Fe-Fe bond (length 2.827(2) Å) is proposed for Fe2(μ-TePh)2(NO)4 on the basis of the 18-electron rule. The iron atom adopts a distorted tetrahedral geometry with acute bridge Fe-Te-Fe angles 67.91(3)°, and bridging Fe-Te bond of length 2.53(1) Å.  相似文献   

2.
Novel Halogenochalcogeno(IV) Acids: [H3O(Benzo‐18‐Crown‐6)]2[Te2Br10] and [H5O2(Dibenzo‐24‐Crown‐8)]2[Te2Br10] Systematic studies on halogenochalcogeno(IV) acids containing tellurium and bromine led to the new crystalline phases [H3O(Benzo‐18‐Crown‐6)]2[Te2Br10] ( 1 ) and [H5O2(Dibenzo‐24‐Crown‐8)]2[Te2Br10] ( 2 ). The [Te2Br10]2‐ anions consists of two edge‐sharing distorted TeBr6 octahedra, the oxonium cations are stabilized by crownether. ( 1 ) crystallizes in the monoclinic space group P21/n with a = 14.520(5) Å, b = 22.259(6) Å, c = 16.053(5) Å, β = 97.76(3)° and Z = 4, whereas ( 2 ) crystallizes in the triclinic space group with a = 11.005(4) Å, b = 12.103(5) Å, c = 14.951(6) Å, α = 71.61(3)°, β = 69.17(3)°, γ = 68.40(3)° and Z = 1.  相似文献   

3.
Oxidative addition of diphenyl disulfide to the coordinatively unsaturated [Mn(CO)5]? led to the formation of low-spin, six-coordinate cis-[Mn(CO)4(SPh)2]?. The complex cis-[PPN][Mn(CO)4(SPh)2] crystallized in monoclinic space group P21/c with a = 9.965(2) Å, b = 24.604(5) Å, c = 19.291(4) Å, β = 100.05(2)°, V = 4657(2)Å3, and Z = 4; final R = 0.036 and Rw = 0.039. Thermal transformation of cis-[Mn(CO)4(SPh)2]? to [(CO)3Mn(μ-SPh)3Mn(CO)3]? was completed overnight in THF at room temperature. Additionally, reaction of [Mn(CO)5]? and PhSH in 1:2 mole ratio also led to cis-[PPN](Mn(CO)4(SPh)2]. Presumably, oxidative addition of PhSH to [Mn(CO)4]? was followed by a Lewis acid-base reaction to form cis-[Mn(CO)4(SPh)2]? with evolution of H2.  相似文献   

4.
The carbamoyl complex [C(NMe2)3][(CO)4Fe{C(O)NMe2}] ( 1 ) reacts with InMe3 under loss of the methyl groups to produce a variety of compounds from which only the anionic cluster complexes [C(NMe2)3]3[Fe2(CO)6(μ‐CO){μ‐InFe(CO)4(μ‐O2CNMe2)InFe(CO)4}] ([C N 3]3[ 2 ]) and [C(NMe2)3]2[{(CO)4Fe}2In(O2CNMe2)]·THF ([C N 3]2[ 3 ]·THF) could be crystallized and characterized by X‐ray analyses. The anion [ 2 ]3? has a Fe2(CO)9‐like structure and both anions contain the carbaminato ligand either in a bridging or in a chelating function.  相似文献   

5.
Synthesis and Structure of the Phosphorus-bridged Transition Metal Complexes [Fe2(CO)6(PR)6] (R = tBu, iPr), [Fe2(CO)4(PiPr)6], [Fe2(CO)3Cl2(PtBu)5], [Co4(CO)10(PiPr)3], [Ni5(CO)10(PiPr)6], and [Ir4(C8H12)4Cl2(PPh)4] (PtBu)3 and (PiPr)3 react with [Fe2(CO)9] to form the dinuclear complexes [Fe2(CO)6(PR)6] (R = tBu: 1 ; iPr: 2 ). 2 is also formed besides [Fe2(CO)4(PiPr)6] ( 3 ) in the reaction of [Fe(CO)5] with (PiPr)3. When PiPr(PtBu)2 and PiPrCl2 are allowed to react with [Fe2(CO)9] it is possible to isolate [Fe2(CO)3Cl2(PtBu)5] ( 4 ). The reactions of (PiPr)3 with [Co2(CO)8] and [Ni(CO)4] lead to the tetra- and pentanuclear clusters [Co4(CO)10(PiPr)3] ( 5 ), [Ni4(CO)10(PiPr)6] [2] and [Ni5(CO)10(PiPr)6] ( 6 ). Finally the reaction of [Ir(C8H12)Cl]2 with K2(PPh)4 leads to the complex [Ir4(C8H12)4Cl2(PPh)4] ( 7 ). The structures of 1–7 were obtained by X-ray single crystal structure analysis (1: space group P21/c (Nr. 14), Z = 8, a = 1 758.8(16) pm, b = 3 625.6(18) pm, c = 1 202.7(7) pm, β = 90.07(3)°; 2 : space group P1 (Nr. 2), Z = 1, a = 880.0(2) pm, b = 932.3(3) pm, c = 1 073.7(2) pm, α = 79.07(2)°, β = 86.93(2)°, γ = 72.23(2)°; 3 : space group Pbca (Nr. 61), Z = 8, a = 952.6(8) pm, b = 1 787.6(12) pm, c = 3 697.2(30) pm; 4 : space group P21/n (Nr. 14), Z = 4, a = 968.0(4) pm, b = 3 362.5(15) pm, c = 1 051.6(3) pm, β = 109.71(2)°; 5 : space group P21/n (Nr. 14), Z = 4, a = 1 040.7(5) pm, b = 1 686.0(5) pm, c = 1 567.7(9) pm, β = 93.88(4)°; 6 : space group Pbca (Nr. 61), Z = 8, a = 1 904.1(8) pm, b = 1 959.9(8) pm, c = 2 309.7(9) pm. 7 : space group P1 (Nr. 2), Z = 2, a = 1 374.4(7) pm, b = 1 476.0(8) pm, c = 1 653.2(9) pm, α = 83.87(4)°, β = 88.76(4)°, γ = 88.28(4)°).  相似文献   

6.
The Reactions of CH2=P(NMe2)3 with Fe(CO)5, Cr(CO)6, and CS2; Molecular Structures of [MeP(NMe2)3][(CO)5CrC(O)CH=P(NMe2)3], and (CO)4Fe=C(OMe)CH=P(NMe2)3 The ylide CH2=P(NMe2)3 ( 1 ) reacts with several binary transition metal carbonyls M(CO)x to produce the corresponding salt like compounds [MeP(NMe2)3][(CO)x–1MC(O)CH=P(NMe2)3] (M = Fe ( 3 ), Cr ( 4 )). The related reaction with CS2 leads to the salt [MeP(NMe2)3][SC(S)CH=P(NMe2)3] ( 2 ). While 4 is thermally stable, 3 rapidly decomposes at room temperature with formation of [MeP(NMe2)3]2[Fe2(CO)8] ( 8 ). Alkylation of 3 (at –50 °C) and 4 with MeSO3CF3 produces the related carbene complexes (CO)x–1M=C(OMe)CH=P(NMe2)3 ( 5 ) and ( 6 ); the reaction of 3 with Me3SiCl results in the formation of the carbene complex (CO)4Fe=C(OSiMe3)CH=P(NMe2)3 ( 7 ). 4 crystallizes in the space group P212121 (No. 19) with a = 1111.1(2), b = 1476.1(3), c = 1823.1(4) pm and Z = 4. 5 crystallizes in the space group P21/n (No. 14) with a = 1303.6(3), b = 910.5(4), c = 1627.0(4) pm, β = 96.06(2)° and Z = 4. The compounds have been characterized by elemental analyses, NMR (1H, 13C, 31P) and IR spectroscopy.  相似文献   

7.
Alcoholysis of [Fe2(OtBu)6] as a Simple Route to New Iron(III)‐Alkoxo Compounds: Synthesis and Crystal Structures of [Fe2(OtAmyl)6], [Fe5OCl(OiPr)12], [Fe5O(OiPr)13], [Fe5O(OiBu)13], [Fe5O(OCH2CF3)13], [Fe5O(OnPr)13], and [Fe9O3(OnPr)21] · nPrOH New alkoxo‐iron compounds can be synthesized easily by alcoholysis of [Fe2(OtBu)6] ( 1 ). Due to different bulkyness of the alcohols used, three different structure types are formed: [Fe2(OR)6], [Fe5O(OR)13] and [Fe9O3(OR)21] · ROH. We report synthesis and crystal structures of the compounds [Fe5OCl(OiPr)12] ( 2 ), [Fe2(OtAmyl)6] ( 3 ), [Fe5O(OiPr)13] ( 4 ), [Fe5O(OiBu)13] ( 5 ), [Fe5O(OCH2CF3)13] ( 6 ), [Fe9O3(OnPr)21] · nPrOH ( 7 ) and [Fe5O(OnPr)13] ( 8 ). Crystallographic Data: 2 , tetragonal, P 4/n, a = 16.070(5) Å, c = 9.831(5) Å, V = 2539(2) Å3, Z = 2, dc = 1.360 gcm?3, R1 = 0.0636; 3 , monoclinic, P 21/c, a = 10.591(5) Å, b = 10.654(4) Å, c = 16.740(7) Å, β = 104.87(2)°, V = 1826(2) Å3, Z = 2, dc = 1.154 gcm?3, R1 = 0.0756; 4 , triclinic, , a = 20.640(3) Å, b = 21.383(3) Å, c = 21.537(3) Å, α = 82.37(1)°, β = 73.15(1)°, γ = 61.75(1)°, V = 8013(2) Å3, Z = 6, dc = 1.322 gcm?3, R1 = 0.0412; 5 , tetragonal, P 4cc, a = 13.612(5) Å, c = 36.853(5) Å, V = 6828(4) Å3, Z = 4, dc = 1.079 gcm?3, R1 = 0.0609; 6 , triclinic, , a = 12.039(2) Å, b = 12.673(3) Å, c = 19.600(4) Å, α = 93.60(1)°, β = 97.02(1)°, γ = 117.83(1)°, V = 2600(2) Å3, Z = 2, dc = 2.022 gcm?3, R1 = 0.0585; 7 , triclinic, , a = 12.989(3) Å, b = 16.750(4) Å, c = 21.644(5) Å, α = 84.69(1)°, β = 86.20(1)°, γ = 77.68(1)°, V = 4576(2) Å3, Z = 2, dc = 1.344 gcm?3, R1 = 0.0778; 8 , triclinic, , a = 12.597(5) Å, b = 12.764(5) Å, c = 16.727(7) Å, α = 91.94(1)°, β = 95.61(1)°, γ = 93.24(2)°, V = 2670(2) Å3, Z = 2, dc = 1.323 gcm?3, R1 = 0.0594.  相似文献   

8.
Alkoxo Compounds of Iron(III): Syntheses and Characterization of [Fe2(OtBu)6], [Fe2Cl2(OtBu)4], [Fe2Cl4(OtBu)2] and [N(nBu)4]2[Fe6OCl6(OMe)12] The reaction of iron(III)chloride in diethylether with sodium tert‐butylat yielded the homoleptic dimeric tert‐‐butoxide Fe2(OtBu)6 ( 1 ). The chloro‐derivatives [Fe2Cl2(OtBu)4] ( 2 ), and [Fe2Cl4(OtBu)2] ( 3 ) could be synthesized by ligand exchange between 1 and iron(III)chloride. Each of the molecules 1 , 2 , and 3 consists of two edge‐sharing tetrahedrons, with two tert‐butoxo‐groups as μ2‐bridging ligands. For the synthesis of the alkoxides 1 , 2 , and 3 diethylether plays an important role. In the first step the dietherate of iron(III)chloride FeCl3(OEt2)2 ( 4 ) is formed. The reaction of iron(III)chloride with tetrabutylammonium methoxide in methanol results in the formation of a tetrabutylammonium methoxo‐chloro‐oxo‐hexairon cluster [N(nBu)4]2[Fe6OCl6(OMe)12] ( 5 ). Crystal structure data: 1 , triclinic, P1¯, a = 9.882(2) Å, b = 10.523(2) Å, c = 15.972(3) Å, α = 73.986(4)°, β = 88.713(4)°, γ = 87.145(4)°, V = 1594.4(5) Å3, Z = 2, dc = 1.146 gcm—1, R1 = 0.044; 2 , monoclinic, P21/n, a = 11.134(2) Å, b = 10.141(2) Å, c = 12.152(2) Å und β = 114.157(3)°, V = 1251.8(4) Å3, Z = 2, dc = 1.377 gcm—1, R1 = 0.0581; 3 , monoclinic, P21/n, a = 6.527(2) Å, b = 11.744(2) Å, c = 10.623(2), β = 96.644(3)°, V = 808.8(2) Å3, Z = 2, dc = 1.641 gcm—1, R1 = 0.0174; 4 , orthorhombic, Iba2, a = 23.266(5) Å, b = 9.541(2) Å, c = 12.867(3) Å, V = 2856(2) Å3, Z = 8, dc = 1.444 gcm—1, R1 = 0.0208; 5 , trigonal, P31, a = 13.945(2) Å, c = 30.011(6) Å, V = 5054(2) Å3, Z = 6, dc = 1.401 gcm—1; Rc = 0.0494.  相似文献   

9.
Reaction of C(NMe2)4 with Ni(CO)4 – Syntheses and Structures of [C(NMe2)3][(CO)3NiC(O)NMe2], [C(NMe2)3]2[Ni5(CO)12], and [C(NMe2)3]3[Ni6(CO)12][O2CNMe2] The reaction of C(NMe2)4 with Ni(CO)4 in THF produces the carbamoyl complex [C(NMe2)3][(CO)3NiC(O)NMe2] ( 1 ); side products are the purple cluster compound [C(NMe2)3]2[Ni5(CO)12] · THF ( 2 · THF) and the red cocristallization product [C(NMe2)3]3[Ni6(CO)12][O2CNMe2] ( 3 ). All compounds were studied by X‐ray diffraction analyses. The cations of 3 are all disordered but not those of 1 and 2 . The unit cell of 1 contains two crystallographically independent anions (I and II) which differ in the dihedral angle between the plane of the carbamoyl ligand and the plane defined by the atoms CCarbamoyl–Ni–CO amounting 0° in the anion I and 18° in the anion II.  相似文献   

10.
Synthesis and Crystal Structure of [C(NMe2)3]2[(CO)4Fe(μ‐InCl2)2Fe(CO)4] Treatment of [C(NMe2)3]2[(CO)4FeInCl3] ( 1 ) with hot water produces the dinuclear complex [C(NMe2)3]2[(CO)4Fe(μ‐InCl2)2Fe(CO)4] ( 2 ) which could be crystallized from dichloromethane/pentane. 2 crystallizes in the monoclinic space group P21/n with a = 835.7(1), b = 1187.8(1), c = 1902.7(1) pm, β = 91.877(5)° and Z = 2. The anion contains a four‐membered Fe—In—Fe—In ring with octahedral environment at the iron atom and tetrahedral coordination at the In atom.  相似文献   

11.
The reaction of the K2[Fe3Q(CO)9] clusters (Q = Se or Te) with Rh2(CO)4Cl2 under mild conditions is accompanied by complicated fragmentation of cores of the starting clusters to form large heteronuclear cluster anions. The [PPh4][Fe4Rh3Se2(CO)16] and [PPh4]2[Fe3Rh4Te2(CO)15] compounds were isolated by treatment of the reaction products with tetraphenylphosphonium bromide. The structures of the products were established by X-ray diffraction. In both compounds, the core of the heteronuclear cluster consists of two octahedra fused via a common Rh3 face. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 775–778, May, 2006.  相似文献   

12.
The cis-[Mn(CO)4(TePh)2]?, similar to bidentate ligand PhTe(CH2)3TePh, acts as a “chelating metalloligand” for the synthesis of metallic tellurolate compounds. The reaction of cis[Mn(CO)4(TePh)2]? with BrMn(CO)5 in THF leads to a mixture of products[(CO)3,BrMn(μ-TePh)2Mn(CO)4]? (1) and Mn2(μ-TePh)2(CO)g (2). Complex 1 crystallizes in the triclinic space group Pl? with a = 11.309(3) Å, b = 14.780(5) Å, c = 19.212(6) Å, a = 76.05(3)° β = 72.31(3)°, γ = 70.41(3)° V = 2848(2) Å3, Z = 2. Final R = 0.034 and Rw = 0.035 resulting from refinement of 10021 total reflections with 677 parameters, Dropwise addition of (MeTe)2 to a solution of [Me3O][BF4] in CH3CN leads to formation of [Me2TeTeMe][BF4], a potential MeTe+ donor ligand. In contrast to oxidative addition of diphenyl ditelluride to [Mn(CO)s]? to give cis-[Mn(CO)4(TePh)2]? which was thermally transformed into [(CO)3Mn(μ-TePh)3Mn(CO)3]?, reaction of [Mn(CO)5]?with [Me2TeTeMe]+ proceeded to give the monomeric species MeTeMn(CO)5 as initial product which was then dimerized into Mn2(μ-TeMe)2(CO)g (4).  相似文献   

13.
The structure of two trinuclear iron acetates [Fe3O(CH3COO)6(H2O)3]Cl· 6H2O (I) and [Fe3O(CH3COO)6(H2O)3][FeCl4] · 2CH3COOH (II) was determined by X-ray diffraction analysis. Crystals I and II are ionic and belong to the orthorhombic system with parameters a = 13.704(3), b = 23.332(5), c = 9.167(2) Å, R = 0.0355, space goup P21212 for I and a = 10.145(4), b = 15.323(6), c = 22.999(8) Å, R = 0.0752, space group Pbc21 for II. The complex cation [Fe3O(CH3COO)6(H2O)3]+ has a μ3-O-bridged structure typical for trinuclear iron (III) compounds. As shown by Mössbauer spectroscopy, the iron(III) ions are in the high-spin state. In trinuclear cations, antiferromagnetic exchange interaction takes place between the Fe(III) ions with the exchange parameter J = -26.69 cm?1 for II (Heisenberg-Dirac-Van Vleck model for D3h, symmetry).  相似文献   

14.
Anionic iron(0) tetracarbonyl with terminal phenyltellurolate ligand PhTe?, [PhTeFe(CO)4]?, has been synthesized and characterized. The title compound was obtained by addition of (PhTe)2 to [PPN][HFe(CO)4] THF solution dropwise. [PPN][PhTeFe(CO)4] crystallizes in the monoclinic space group C c, with a = 16.119(4) Å, b = 13.141(3) Å, c = 19.880(8) Å, β = 93.04(3)°, V = 4205(2) Å3, and Z = 4. The [PhTeFe(CO)4]? anion is a trigonal-bipyramidal complex in which the phenyltellurolate ligand occupies an axial position with Fe-Te bond length 2.630(5) Å and the Fe-Te-C(Ph) angle is 103.4(5)°. The neutral iron(0)-telluroether compound, (PhTeMe)Fe(CO)4, was prepared by alkylation of the [PhTeFe(CO)4]?. Protonation of [PhTeFe(CO)4]?and reaction of H2Fe(CO)4 and PhTe)2 ultimately lead to formation of the known dimer Fe2(μ-TePh)2(CO)6 and H2.  相似文献   

15.
The diiron ynamine complexes [Fe2(CO)7{μ-C(R)C(NEt2)}] (1) (R=Me, Ph, C3H5, SiMe3) react with theN-sulfinylaniline, PhNSO, in refluxing hexane to yield the complexes [Fe2(CO)6{μ-N(Ph)C(Me)S}] (2), [Fe2(CO)6{μ-N(Ph)C(NEt2)C(Ph)S}] · 0.5C6H12 (3), [Fe2(CO)6{μ-C(C3H5)C(NEt2)N(Ph)SO}] · 0.5CH2Cl2 (4), and [Fe2(CO)6{μ-C(SiMe3)C(NEt2)S)}] (5). Compound 5 was found to be identical to the previously reported product obtained from the reaction of 1 with sulfur. Compounds 2, 3, and 4 were characterized by single crystal X-ray diffraction analyses. Crystal data: for 2: space group = P21/n,a=9.533(1) Å,b=18.830(4) Å,c=12.705(4) Å, β=107.01(2)°,Z=4, 2687 reflections,R=0.027; for 3: space group=P21/n,a=13.660(2) Å,b=19.096(8) Å,c=10.972(2) Å, β=90.62(1)°,Z=4, 2821 reflections,R=0.036; for 4: space group=P21/a,a=18.098(5) Å,b=16.564(4) Å,c=18.548(2) Å, β=115.44(2)°,Z=4, 3569 reflections,R=0.041. Complexes 2 and 3 result from fragmentation of theN-sulfinylaniline ligand and insertion of the nitrene grouping into the Fe=C(aminocarbene) bond, whereas the sulfur atom inserts into one Fe-C bond of the bridging carbene. Compound 4 is formed by insertion of the entireN-sulfinyl aniline ligand into the Fe=C(aminocarbene) bond. All three complexes have basket-like arachno structure isolobal to the benzvalene one.  相似文献   

16.
Red crystals of [H3O · (dibenzo-18-crown-6)][Te2Br9] ( 1 ) were isolated from a solution of TeBr4 and dibenzo-18-crown-6 in CH3CN containing a small amount of hydrobromic acid. The compound crystallizes in the triclinic space group P 1 with the cell dimensions a = 9.010(2), b = 13.403(3), c = 14.606(4) Å, α = 98.94(2)°, β = 100.40(2)°, and γ = 91.40(2)° (150 K). From a solution of TeCl4 in 1,4-dioxane containing hydrochloric acid [H5O2][Te2Cl9] · 2 C4H8O2 ( 2 ) precipitates as colorless crystals in the orthorhombic space group Pnma with the cell dimensions a = 17.023(4), b = 13.389(4), and c = 10.900(3) Å (150 K). In both structures the [Te2X9] anion (X = Cl, Br) consists of one TeX6 octahedron and one TeX5 square pyramidal unit connected by a common edge. In compound 1 the coordination sphere of the square pyramidal fragment is completed by a very weakly η6 bound benzo group of the cationic unit. In compound 2 an oxygen atom of the oxonium ion weakly interacts with the fivefold coordinated tellurium atom. The cationic units are a crown ether oxonium complex in 1 and a supramolecular 1,4-dioxane-oxonium network in 2 .  相似文献   

17.
Crystal structures of Cs4[Re6Te8(CN)6]·2H2O (1) and Ba2[Re6Te8(CN)6]· 12H2O (2) are determined. Crystals 1 are orthorhombic, a = 14,282(1), b = 12.910(1), c = 18.040(1) Å, Vcell = 3326.3(8) Å3, space group Pbcn, Z = 4, dcalc = 5.715 g/cm3, R(F) = 0.0482 for 3193 Fhkl > 4σ(F). Crystals 2 are triclinic, a = 9.671(3), b = 9.697(4), c = 11.039(4) Å, α = 89.86(3), β = 72.34(3), γ = 82.46(3)°, Vcell = 977.2(6) Å3, space group P1, Z = 1, dcalc = 4.733 g/cm3, R(F) = 0.0490 for 3226 Fhkl > 4σ(F). In both structures, the [Re6Te8(CN)6]4? anions form a distorted primitive cubic packing with distances between the centers 9.02-9.63 Å in 1 and 9.70-11.04 Å in 2. The Cs+ cations in 1 lie near the face centers of the cubes formed by the onions. In 2, cation pairs (Ba2+)2 bonded to two solvate water molecules are formed; the pairs lie at the centers of the anion cubes. In structures 1 and 2, there are shortened contacts between the tellurium atoms belonging to the neighboring anions (3.75-4.09 and 3.95-4.22 Å, respectively).  相似文献   

18.
A new diiron complex has been synthesized and characterized by X‐ray single crystal structural analysis: [FeII(phen)3][FeIII2OCl6]·2CH3CN. The complex crystallizes in the monoclinic system, space group C2/c, with lattice parameters a = 21.162(4) Å, b = 15.168(3) Å, c = 14.812(3) Å, β= 112.71 (3)°, V = 4385.8(15) Å3, Dx = 1.543 Mg/m3, Z = 4. The corresponding variable temperature susceptibility measurement shows that there exists an antiferromagnetic interaction in the complex.  相似文献   

19.
Tetranuclear Cluster Complexes of the Type [MM′(AuR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (M,M′ = Mn, Re; R = Ph, Cy, Et): Synthesis, Structure, and Topomerisation The dirhenium complex [Re2(μ‐H)(μ‐PCy2)(CO)7(ax‐H2PCy)] ( 1 ) reacts at room temperature in thf solution with each two equivalents of the base DBU and of ClAuPR3 (R = Ph, Cy, Et) in a photochemical reaction process to afford the tetranuclear clusters [Re2(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 2 ), Cy ( 3 ), Et ( 4 )) in yields of 35–48%. The homologue [Mn2(μ‐H)(μ‐PCy2)(CO)7(ax‐H2PCy)] ( 5 ) leads under the same reaction conditions to the corresponding products [Mn2(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 6 ), Et ( 8 )). Also [MnRe(μ‐H)(μ‐PCy2)(CO)7(ax/eq‐H2PCy)] ( 9 ) reacts under formation of [MnRe(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 10 ), Et ( 11 )). All new cluster complexes were identified by means of 1H‐NMR, 31P‐NMR and ν(CO)‐IR spectroscopic measurements. 2 , 4 and 10 have also been characterized by single crystal X‐ray structure analyses with crystal parameters: 2 triclinic, space group P 1, a = 12.256(4) Å, b = 12.326(4) Å, c = 24.200(6) Å, α = 83.77(2)°, β = 78.43(2)°, γ = 68.76(2)°, Z = 2; 4 monoclinic, space group C2/c, a = 12.851(3) Å, b = 18.369(3) Å, c = 40.966(8) Å, β = 94.22(1)°, Z = 8; 10 triclinic, space group P 1, a = 12.083(1) Å, b = 12.185(2) Å, c = 24.017(6) Å, α = 83.49(29)°, β = 78.54(2)°, γ = 69.15(2)°, Z = 2. The trapezoid arrangement of the metal atoms in 2 and 4 show in the solid structure trans‐positioned an open and a closed Re…Au edge. In solution these edges are equivalent and, on the 31P NMR time scale, represent two fluxional Re–Au bonds in the course of a topomerization process. Corresponding dynamic properties were observed for the dimanganese compounds 6 and 8 but not for the related MnRe clusters 10 and 11 . 2 and 4 are the first examples of cluster compounds with a permanent Re–Au bond valence isomerization.  相似文献   

20.
Novel tetrameric rhenium(V) complexes have been prepared from [ReNCl2(PPh3)2] and [ReN(PMe2Ph)(S2CNEt)2], respectively. [ReNCl2(PPh3)2] reacts with 1.5 equivalents of KS2CNEt2 in methanol to yield the unusual dark red species [{cyclo-ReN}4(S2CNEt2)6(MeOH)2(PPh3)2][BPh4]2 · CH2Cl2 · 2 H2O ( 1 ). The crystal structure of the tetramer (triclinic, space group P1, a = 13.842(2), b = 15.213(2), c = 16.796(3) Å, α = 67.88(1), β = 70.90(1), γ = 88.05(1)°, U = 3080.2(8) Å3, Z = 1) shows four rhenium atoms in a square configuration which are bridged via linear asymmetric Re≡N–Re groups with bond lengths of about 169 and 203 pm. The molecule contains a centre of symmetry with two distinct octahedral rhenium environments. The first rhenium environment contains two bidentate dithiocarbamate ligands which complete the octahedral geometry and the second contains a bidentate dithiocarbamate ligand, coordinated methanol and has retained a single phosphine coligand. A symmetric compound containing the {cyclo-ReN}4 core is obtained from the reaction of [ReN(PMe2Ph)(S2CNEt2)2] with Al2Cl6 in acetone. [{cyclo-ReN}4(S2CNEt2)4Cl4(PMe2Ph)4] · 2 acetone ( 2 ) forms red crystals (monoclinic, space group C2/c, a = 21.432(6), b = 13.700(3), c = 28.060(9) Å, β = 102.37(1)°, U = 8048(4) Å3, Z = 4) with each rhenium atom coordinated by a bidentate dithiocarbamato, a phosphine and a chloro ligand. The non-planar 8-membered {ReN}4 ring contains asymmetric Re≡N–Re bridges (mean values: 1.69 Å and 2.029 Å, respectively). In contrast, reaction of [ReNCl(S2CNEt2)(PMe2Ph)2] with one equivalent of K[S2CN(Me)CH2CH2NMe3]I gave the mixed dithiocarbamato-cation [ReN(S2CNEt2)(S2CN(Me)CH2CH2NMe3)(PMe2Ph)]+ ( 3 ) which was isolated as a tetraphenylborate salt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号