首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
邱兆斌 《高分子科学》2014,32(9):1139-1148
Poly(vinylidene fluoride) (PVDF) and poly(butylene succinate-co-24 mol% hexamethylene succinate) (PBHS), both crystalline polymers, formed melt-miscible crystalline/crystalline polymer blends. Both the characteristic diffraction peaks and nonisothermal melt crystallization peak of each component were found in the blends, indicating that PVDF and PBHS crystallized separately. The crystalline morphology and crystallization kinetics of each component were studied under different crystallization conditions for the PVDF/PBHS blends. Both the spherulitic growth rates and overall isothermal melt crystallization rates of blended PVDF decreased with increasing the PBHS composition and were lower than those of neat PVDF, when the crystallization temperature was above the melting point of PBHS component. The crystallization mechanism of neat and blended PVDF remained unchanged, despite changes of blend composition and crystallization temperature. The crystallization kinetics and crystalline morphology of neat and blended PBHS were further studied, when the crystallization temperature was below the melting point of PBHS component. Relative to neat PBHS, the overall crystallization rates of the blended PBHS first increased and then decreased with increasing the PVDF content in the blends, indicating that the preexisting PVDF crystals may show different effects on the nucleation and crystal growth of PBHS component in the crystalline/crystalline polymer blends.  相似文献   

2.
Isothermal crystallization of poly(butylene terephthalate) (PBT) blended with oligomeric poly(ε‐caprolactone) (PCL) is investigated by polarized optical microscopy and differential scanning calorimetry at various temperatures (Tc). The growth rate of PBT spherulites is found to depend on time (t), as the spherulite radius (r) linearly increases with t at the early stages of crystallization (rt), then, with the progress of phase transition, the spherulite radius becomes dependent on the square root of the time (rt1/2) until termination of crystal growth. The nonlinear advance of the crystal growth front is caused by a varied composition of the melt phase in contact with the growing crystals, due to diffusion of mobile PCL chains away from the spherulite surface. The melt phase becomes spatially inhomogeneous, causing self‐deceleration of PBT crystallization until a limit composition that prevents further crystallization is reached in the melt. The maximum crystallinity achievable during isothermal crystallization decreases with Tc. The lowering of the temperature after termination of the isothermal crystallization allows to complete the crystal growth, but the final developed crystallinity still depends on Tc, being lower at higher Tcs. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3148–3155, 2007  相似文献   

3.
The isothermal crystallization kinetics and melting behavior of poly(butylene terephthalate) (PBT) in binary blends with poly(ε-caprolactone) (PCL) was investigated as a function of PCL molecular mass by differential scanning calorimetry and optical microscopy. The components are miscible in the melt when oligomeric PCL (Mw = 1250) is blended with PBT, whereas only partial miscibility was found in mixtures with higher molecular mass (Mw = 10,000 and 50,000). The equilibrium melting point of PBT in the homopolymer and in blends with PCL was determined through a non-linear extrapolation of the Tm = f(Tc) curve. The PBT spherulitic growth rate and bulk crystallization rate were found to increase with respect to plain PBT in blends with PCL1250 and PCL10000, whereas addition of PCL50000 causes a reduction of PBT solidification rate. The crystallization induction times were determined by differential scanning calorimetry for all the mixtures through a blank subtraction procedure that allows precise estimation of the crystallization kinetics of fast crystallizing polymers. The results have been discussed on the basis of the Hoffman-Lauritzen crystallization theory and considerations on both the transport of chains towards the crystalline growth front and the energy barrier for the formation of critical nuclei in miscible and partially miscible PBT/PCL mixtures are widely debated.  相似文献   

4.
Poly(butylene terephthalate)/poly(butylene terephthalate-e-caprolactone) is a new A/AxB1-x binary crystalline blend with intra-molecular repulsion interaction. Using the mean-field binary interaction model, the value of interaction parameter between the butylene terephthalate and caprolactone structural unit was first reported to be 0.305. This blend exhibited different crystallization behavior from a typical homopolymer/copolymer blend, which was carefully investigated by di?erential scanning calorimetry. It was found that poly(butylene terephthalate-e-caprolactone) copolymers have a great effect on the pure poly(butylene terephthalate) chain mobility and poly(butylene terephthalate) crystalline lattice packing. In the meantime, the crystallization of butylene terephthalate segments in copolymers was restricted by the previously formed poly(butylene terephthalate) crystallites. The two constituents for blending can not form a co-crystal in the range of composition even if they have the same butylene terephthalate unit. It can be concluded that longersegments in a copolymer would be beneficial for the formation of a co-crystal in blends.  相似文献   

5.
Blends of poly(butylene terephthalate) (PBT) with 30 wt % acrylonitrile–ethylene–propylene–diene–styrene (AES) were prepared with methyl methacrylate (MMA)/glycidyl methacrylate (GMA)/ethyl acrylate (EA) terpolymers (MGEs) as compatibilizing agents. These acrylic terpolymers were miscible with the styrene–acrylonitrile (SAN) phase of AES, whereas the epoxide groups of GMA could react with the PBT end groups; this could lead to the formation of grafted copolymers (PBT‐g‐MGE) at the PBT/AES interface during the melt processing of the blends if at least a fraction of this interface was formed between the PBT and SAN phases. This study found evidence of the aforementioned interfacial structure through the effectiveness of the MGE terpolymers in promoting the compatibilization, as evaluated by dynamical mechanical analysis, through the increase in the viscosity of the blends, and through the reduction of the AES particle size dispersed in the PBT matrix. These effects became more intense with an increase in the overall concentration of GMA in the blends and with a reduction of the molecular weight of MGE. Another effect promoted by the compatibilization was a remarkable reduction of the brittle–ductile transition temperatures of the blends, which was correlated with the reduction of the AES particle size. However, this correlation between the brittle–ductile transition temperatures and particle size did not hold for the blend with the lowest AES particle size, which showed a high ductile–brittle transition temperature. These mechanical behaviors were examined on the basis of the current theory of the toughening of thermoplastics, which takes into account the importance of the rubber interparticle distance and the cavitation process of these particles. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1244–1259, 2005  相似文献   

6.
Rubber toughening of poly(ether imide) (PEI) has been elusive up to now due to the high processing temperature of PEI, which leads to degradation of the rubber. In this study, by profiting from the miscibility between PEI and poly(butylene terephthalate) (PBT), and the low Tg of PBT, we prepared a blend by melt extrusion with 20 wt% PBT in an attempt to render it toughenable by decreasing its Tg and processing temperature. The PEI-rich blend was subsequently mixed with maleic anhydride (0.9 wt%) grafted poly(ethylene-octene) copolymer (mPEO) up to 30 wt%. The decrease in Tg and processing temperature resulted in no observable degradation of the mPEO, and to the formation of a homogeneous morphology of rubber particles with a fine particle size, indicating that compatibilization was achieved. Upon rubber addition, stiffness decreased, while a very large toughness increase occurred with only 15% mPEO (impact strength more than 10-fold that of the PEI-PBT matrix). Upon observation of the fracture surface, the increase in impact strength was attributed partially to the cavitation and debonding of the rubber particles, and mostly to the deformation and yielding of the PEI-PBT matrix.  相似文献   

7.
Poly(butylene terephthalate) (PBT) had been covalently attached onto the surface of multiwalled carbon nanotubes (MWNTs) by a “grafting from” method based on in situ ring‐opening polymerization (ROP) of cyclic butylene terephthalate oligomers (CBT) using MWNT‐supported initiator (MWNT‐g‐Sn). The Sn? O bond grafted on the surface of MWNTs, which was confirmed by X‐ray photoelectron spectroscopy, provided the initiating sites for ROP of CBT. Fourier transformed infrared spectroscopy and nuclear magnetic resonance were used to confirm the chemical structure of MWNT‐graft‐PBT copolymer and emission transmission electron microscope was utilized to observe the nanostructure of the PBT functionalized MWNTs. A distinct core–shell structure with PBT layer as the shell could be observed after functionalization of PBT despite it was not uniform. The results of thermogravimetric analysis indicated that the grafting ratio of PBT was about 59.3%. Furthermore, the solubility of the PBT functionalized MWNTs in phenol/tetrachloroethane had also been investigated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Mechano-optical behavior and related structural evolution during uniaxial stretching of melt miscible poly (ethylene terephthalate) (PET)/poly (ether imide) (PEI) blends were studied near their glass transition temperature using an instrumented machine that measures true stress, true strain and spectral birefringence simultaneously. Stretching from amorphous state, two distinct stress-optical regimes were observed at temperatures between Tg and Tcc (cold crystallization). Near Tg, a typical photoelastic behavior persists until a critical temperature above which temperature independent initial stress optical behavior is observed. At those temperatures above Tg, where glassy behavior is observed, decreasing stretching rate was also found to eliminate this glassy photo elastic regime leading to the observation of a linear initial stress optical behavior that becomes temperature independent as expected from linear stress optical rule. Increasing PEI concentration in the blends suppresses crystallizability and increases temperature at which initial elastic region disappears giving way to pure liquid behavior where linear stress optical behavior is observed. This is attributed to the increase and broadening of the glass transition temperature with the addition of noncrystallizable PEI. In PET/PEI blends, the stress-optical coefficient (SOC), determined in a linear stress optical regime, was found to increase linearly with the increase in PEI concentration.  相似文献   

9.
The inherent miscibility and effects of reaction-induced changes on the phase behaviour of blends of poly(trimethylene terephthalate) (PTT) with bisphenol-A polycarbonate (PC) were studied. The as-prepared (solution-cast) blends exhibited two well-spaced and separated glass transition temperatures (Tgs) and a heterogeneous phase-separated morphology, indicating an immiscible system. However, after annealing at high temperature (at 260 °C), the blends original two Tgs merged into one single Tg, and the annealed blends exhibited a homogeneous morphology, and turned from having a semicrystalline into having an amorphous nature upon extended annealing. The annealing-induced changes of phase behaviour in the blends were analyzed. The homogenization process of the blends upon heating is attributed to chemical transreactions between the PTT and PC chain segments, as evidenced with FT-IR characterization. The IR result showed a new aryl C-O vibration peak at 1,070 cm–1 for the annealed blends, which is characteristic of an aromatic polyester structure formed from exchange reactions between PTT and PC. The transreactions between PTT and PC led to a random copolymer comprised of PC/PTT segments, which is believed to serve as a compatibilizer at the beginning stage of transreactions, but at later stage, the random copolymer became the main species of blends and turned to a homogeneous and amorphous phase.  相似文献   

10.
研究了系列PEG-b-PBT嵌段共聚物在pH=7.4磷酸盐缓冲溶液中和37℃条件下的体外降解行为.同时观察了水解降解过程中系列共聚物溶胀率、失重、特性粘度、结晶度和表面形态等方面的变化.实验结果表明,嵌段共聚物的组成直接影响其水解降解性能,共聚物的溶胀率和失重率随聚醚组分含量而增大;通过调节共聚物的组分比可以达到调节降解速率的目的.此外研究还表明,共聚物最初的降解主要发生在软段和硬段相联的酯键上.  相似文献   

11.
李忠明 《高分子科学》2011,29(5):540-551
One-step reaction compatibilized microfibrillar reinforced iPP/PET blends(CMRB) were successfully prepared through a "slit extrusion-hot stretching-quenching" process.Crystallization behavior and morphology of CMRB were systematically investigated.Scanning electronic microscopy(SEM) observations showed blurry interface of compatibilized common blend(CCB).The crystallization behavior of neat iPP,CCB,microfibrillar reinforced iPP/PET blend(MRB) and CMRB was investigated by differential scanning calorimetry(DSC) and polarized optical microscopy(POM).The increase of crystallization temperature and crystallization rate during nonisothermal crystallization process indicated both PET particles and microfibrils could serve as nucleating agents and PET microfibrils exhibited higher heterogeneous nucleation ability,which were also vividly revealed by results of POM.Compared with MRB sample,CMRB sample has lower crystallization temperature due to existence of PET microfibrils with smaller aspect ratio and wider distribution.In addition, since in situ compatibilizer tends to stay in the interphase,it could also hinder the diffusion of iPP molecules to the surface of PET phase,leading to decrease of crystallization rate.Two-dimensional wide-angle X-ray diffraction(2D-WAXD) was preformed to characterize the crystalline structure of the samples by injection molding,and it was found that well-developed PET microfibrils contained in MRB sample promoted formation ofβ-phase of iPP.  相似文献   

12.
New super‐tough poly(butylene terephthalate) (PBT)/poly(ethylene‐octene) copolymer (PEO) blends containing 2 wt% poly(ethylene‐co‐glycidyl methacrylate) (EGMA) as a compatibilizer were obtained by extrusion and injection molding. The blends comprised of an amorphous PBT‐rich phase with some miscibilized EGMA, a pure PEO amorphous phase, and a crystalline PBT phase that was not influenced by the presence of either PEO or EGMA. The blends showed a fine particle size up to 20 wt% PEO content. Super‐tough blends were obtained with PEO contents equal to or higher than 10%. The maximum toughness was very high (above 710 J/m) and was attained with 20% PEO without chemical modification of the commercial components used. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Binary blends of polypropylene (PP)/recycled poly(ethylene terephthalate) (r-PET), r-PET/maleic anhydride grafted PP (PP-g-MA), r-PET/glycidyl methacrylate grafted PP (PP-g-GMA), and ternary blends of PP/r-PET (80/20 w/w) compatibilized with various amounts (2-10 wt%) of PP-g-MA or PP-g-GMA were prepared on a twin-screw extruder. The non-isothermal crystallization and melting behavior, and the crystallization morphology were investigated by DSC and POM. The chemical reactions of r-PET with PP-g-MA and PP-g-GMA were characterized by FT-IR. DSC results show that the crystallization peak temperatures of r-PET and PP increased when blending them together, due to the heterogeneous nucleation effect on each other. The of r-PET increased with increasing the content of PP-g-MA while slightly influenced by the content of PP-g-GMA in the binary blends of r-PET with grafted PP, implying different reactivity of r-PET with PP-g-MA and PP-g-GMA. The of PP in the ternary blends retained or slightly decreased, dependent on the compatibilizers and their contents. The melting peak temperature of r-PET in PP/r-PET blends compatibilized by PP-g-MA was lower than that of compatibilized by PP-g-GMA, indicating that PP-g-MA had stronger reactivity towards r-PET compared to PP-g-GMA. The crystallization and melting behavior of blends was influenced by the pre-melting temperature, especially the melting behavior of r-PET in the blends. The crystallization behavior of PP in the blends was also evaluated by Mo’s method. POM confirmed the heterogeneous nucleation effect of r-PET on PP.  相似文献   

14.
Poly(lactic acid), PLA, was chemically modified with maleic anhydride (MA) by reactive extrusion. The effect of this modification on molar mass (MM) and acidity was assessed by means of size-exclusion chromatography (SEC) and titration, respectively. PLA MM decreased in the presence of MA solely and of MA and peroxide. Reduction in MM was monitored by the increase in acidity. PLA blends containing poly(butylene adipate-co-terephthalate) (PBAT) were prepared through different mixing protocols, PLA/PBAT, PLA-g-MA/PBAT and PLA/PBAT/MA/peroxide (PLA/PBAT in situ). SEC results and rheological properties revealed reduction in MM and viscosity of the modified blends. PLA/PBAT presented increase in MM and bimodal MM distribution. The calculated interfacial tension was significantly lower for the modified blends, despite the lower average particle area of PLA/PBAT. Surprisingly, the modified blends presented higher yield strength than that predicted by the rule of mixtures, which might indicate interfacial reactions.  相似文献   

15.
三元乙丙橡胶环氧化增韧聚对苯二甲酸丁二酯的研究   总被引:1,自引:0,他引:1  
三元乙丙橡胶环氧化增韧聚对苯二甲酸丁二酯的研究王学会,张会轩,王新华,王志刚,蒋俊光,姜炳政(吉林工学院化工系,长春,130012)(中国科学院长春应用化学研究所)关键词三元乙丙橡胶,环氧化,PBT,增韧作用,共混物聚对苯二甲酸丁二酯(PBT)具有优...  相似文献   

16.
Poly(trimethylene terephthalate)/acrylonitrile-butadiene-styrene (PTT/ABS) blends were prepared by melt processing with and without epoxy or styrene-butadiene-maleic anhydride copolymer (SBM) as a reactive compatibilizer. The miscibility and compatibilization of the PTT/ABS blends were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), capillary rheometer and scanning electron microscopy (SEM). The existence of two separate composition-dependent glass transition temperatures (Tgs) indicates that PTT is partially miscible with ABS over the entire composition range. In the presence of the compatibilizer, both the cold crystallization and glass transition temperatures of the PTT phase shifted to higher temperatures, indicating their compatibilization effects on the blends.The PTT/ABS blends exhibited typical pseudoplastic flow behavior. The rheological behavior of the epoxy compatibilized PTT/ABS blends showed an epoxy content-dependence. In contrast, when the SBM content was increased from 1 wt% to 5 wt%, the shear viscosities of the PTT/ABS blends increased and exhibited much clearer shear thinning behavior at higher shear rates. The SEM micrographs of the epoxy or SBM compatibilized PTT/ABS blends showed a finer morphology and better adhesion between the phases.  相似文献   

17.
Crystallization behaviour of blends of poly(N-methyldodecano-12-lactam) (PMDL) with statistical copolymer poly(styrene-stat-acrylic acid) (PSAA) has been studied by the DSC and WAXD methods. The blend films prepared from dioxane solutions were crystallized at laboratory temperature for five days. Approximate crystallinities of as-prepared neat lower- PMDL 5 and higher-molecular weight PMDL 45 were 28% and 19%, respectively. With increasing PSAA content in the blends the crystallinities decreased sharply. The melting point of the primary crystalline structure of PMDL showed a decreasing dependence on PSAA content in the blends, confirming miscibility of the PMDL-PSAA pair. Recrystallization was strongly suppressed in the blends. The lower-melting endotherm appearing at about 10-15 °C above the crystallization temperature was attributed to melting to less perfect structures formed during secondary crystallization. In neat PMDL, the extent of secondary crystallization was approximately 5-10%. In the blends containing 20% PSAA approximate relative proportion of secondary crystallites on total crystallinity was 40% and 60% for the blends with PMDL 5 and PMDL 45, respectively. WAXD measurements did not reveal any change in crystal modification on blending. Increased Tg in blends of flexible PMDL cannot play a significant role in suppression of primary in favour of secondary crystallization. This was attributed to low mobility of PMDL chains due to dilution effect and specific interactions with the amorphous copolymer component, and, in case of the higher-molecular-weight PMDL, a greater involvement of entanglements. Higher Tg of blends was involved in retardation of non-isothermal crystallization on cooling and subsequent cold crystallization.  相似文献   

18.
Blends of poly(butylene terephthalate) (PBT) and a copolyester of bisphenol-A with 50% terephthalate-50% isophthalate (PAr), before and after transesterification, have been studied by thermal and dynamic mechanical tests to determine crystallinity and phase behavior. Blends without transesterification, as prepared by solution precipitation, show a single Tg, indicating amorphous miscibility of PBT and PAr. A melting-point depression for PBT crystals is not observed; this means that PBT crystallizes excluding PAr and the entropy of melting is small. The highest fractional crystallinity for PBT is obtained at 20-35% of PAr. Transesterified blends were obtained by holding the physical blends at 250°C for up to 16 h. The transesterified systems show higher Tg's than the corresponding physical blends and also show a marked melting-point depression and lesser PBT crystallinity at the corresponding increased PAr content.  相似文献   

19.
The thermoreversible gelation of solutions of poly(butylene terephthalate) (PBT) and a liquid diglycidyl ether of bisphenol-A epoxy has been investigated. The morphology of the gels and the conditions under which they form have been characterized by optical microscopy, thermal analysis, and x-ray scattering. Gels were found to form under two different conditions and with different morphologies. Gels formed after a considerable delay when homogenous PBT-epoxy solutions were cooled to slightly below the dissolution temperature of crystalline PBT. These gels contained large, irregular PBT spherulites and smaller birefringent interspherulitic matter. The melting of these gels and the onset of macroscopic flow coincided with the melting of the interspherulitic matter, and occurred before the melting of the large spherulites. Thermoreversible gels formed very quickly when PBT-epoxy solutions were self-nucleated by heating a dispersion of crystalline PBT in epoxy slightly and briefly above the dissolution temperature and then cooling. These gels displayed only a weak background birefringence and were molten when the weak birefringence disappeared. In both cases, gelation occurred by the formation of a three-dimensional PBT network in the epoxy liquid, and the nodes of the network were crystalline PBT particles. $ 1994 John Wiley & Sons, Inc.  相似文献   

20.
Memory effects of several copolymers of poly(ethylene oxide) (PEO) and poly(ethylene terephthalate) (PET) were illustrated with photos, determined with shrinkage experiments and characterized by the recovery of samples to their original figures. Copolymers of appropriate composition could undertake an approximately full recovery which is tightly related to the annealing temperature at which shrinkage of samples occurs to some extent. Melting and recrystallization of PEO segments may be responsible for the memory effect. The memory properties of samples almost kept unchanged after many fatigue cycles (e.g. 15–20 cycles), which could make these copolymers useful in practical applications as novel shape memory materials. © 1997 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号