首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Akiyama, Exoo, and Harary conjectured that for any simple graph G with maximum degree Δ(G), the linear arboricity la(G) satisfies ?Δ(G)/2? ≦ la(G) ≦ ?(Δ(G) + 1)/2?. Here it is proved that if G is a loopless graph with maximum degree Δ(G) ≦ k and maximum edge multiplicity μ(G) ≦ k ? 2n+1 + 1, where k ≧ 2n?2, then la(G) ≦ k ? 2n. It is also conjectured that for any loopless graph G, ?Δ(G)/2? ≦ la(G) ≦ ?(Δ(G) + μ(G))/2?.  相似文献   

2.
《Quaestiones Mathematicae》2013,36(4):383-398
Abstract

A set B of vertices of a graph G = (V,E) is a k-maximal independent set (kMIS) if B is independent but for all ?-subsets X of B, where ? ? k—1, and all (? + 1)-subsets Y of V—B, the set (B—X) u Y is dependent. A set S of vertices of C is a k-maximal clique (kMc) of G iff S is a kMIS of [Gbar]. Let βk, (G) (wk(G) respectively) denote the smallest cardinality of a kMIS (kMC) of G—obviously βk(G) = wk([Gbar]). For the sequence m1 ? m2 ?…? mn = r of positive integers, necessary and sufficient conditions are found for a graph G to exist such that wk(G) = mk for k = 1,2,…,n and w(G) = r (equivalently, βk(G) = mk for k = 1,2,…,n and β(G) = r). Define sk(?,m) to be the largest integer such that for every graph G with at most sk(?,m) vertices, βk(G) ? ? or wk(G) ? m. Exact values for sk(?,m) if k ≥ 2 and upper and lower bounds for s1(?,m) are de termined.  相似文献   

3.
Let G be a graph of order n ? 3. We prove that if G is k-connected (k ? 2) and the degree sum of k + 1 mutually independent vertices of G is greater than 1/3(k + 1)(n + 1), then the line graph L(G) of G is pancyclic. We also prove that if G is such that the degree sum of every 2 adjacent vertices is at least n, then L(G) is panconnected with some exceptions.  相似文献   

4.
We consider the following problem: Given positive integers k and D, what is the maximum diameter of the graph obtained by deleting k edges from a graph G with diameter D, assuming that the resulting graph is still connected? For undirected graphs G we prove an upper bound of (k + 1)D and a lower bound of (k + 1)D ? k for even D and of (k + 1)D ? 2k + 2 for odd D ? 3. For the special cases of k = 2 and k = 3, we derive the exact bounds of 3D ? 1 and 4D ? 2, respectively. For D = 2 we prove exact bounds of k + 2 and k + 3, for k ? 4 and k = 6, and k = 5 and k ? 7, respectively. For the special case of D = 1 we derive an exact bound on the resulting maximum diameter of order θ(√k). For directed graphs G, the bounds depend strongly on D: for D = 1 and D = 2 we derive exact bounds of θ(√k) and of 2k + 2, respectively, while for D ? 3 the resulting diameter is in general unbounded in terms of k and D. Finally, we prove several related problems NP-complete.  相似文献   

5.
This paper introduces a new parameter I = I(G) for a loopless digraph G, which can be thought of as a generalization of the girth of a graph. Let k, λ, δ, and D denote respectively the connectivity, arc-connectivity, minimum degree, and diameter of G. Then it is proved that λ = δ if D ? 2I and κ k = δ if D ? 2I - 1. Analogous results involving upper bounds for k and λ are given for the more general class of digraphs with loops. Sufficient conditions for a digraph to be super-λ and super-k are also given. As a corollary, maximally connected and superconnected iterated line digraphs and (undirected) graphs are characterized.  相似文献   

6.
The oriented diameter of a bridgeless connected undirected (bcu) graph G is the smallest diameter among all the diameters of strongly connected orientations of G. We study algorithmic aspects of determining the oriented diameter of a chordal graph. We (a) construct a linear‐time approximation algorithm that, for a given chordal bcu graph G, finds a strongly connected orientation of G with diameter at most one plus twice the oriented diameter of G; (b) prove that, for every k ≥ 2 and k # 3, to decide whether a chordal (split for k = 2) bcu graph G admits an orientation of diameter k is NP‐complete; (c) show that, unless P = NP, there is neither a polynomial‐time absolute approximation algorithm nor an α‐approximation algorithm that computes the oriented diameter of a bcu chordal graph for α < . © 2004 Wiley Periodicals, Inc. J Graph Theory 45: 255–269, 2004  相似文献   

7.
A graph G is a k-amalgamation of two graphs G1 and G2 if G = G1G2 and G1G2 is a set of k vertices. In this paper we show that γ(G) differs from γ(G1) + γ(G2) by at most a quadratic on k, where γ denotes the nonorientable genus of a graph. In the sequel to this paper we show that no such bound holds for the orientable genus of k-amalgamations.  相似文献   

8.
In this article we study the n‐existential closure property of the block intersection graphs of infinite t‐(v, k, λ) designs for which the block size k and the index λ are both finite. We show that such block intersection graphs are 2‐e.c. when 2?t?k ? 1. When λ = 1 and 2?t?k, then a necessary and sufficient condition on n for the block intersection graph to be ne.c. is that n?min{t, ?(k ? 1)/(t ? 1)? + 1}. If λ?2 then we show that the block intersection graph is not ne.c. for any n?min{t + 1, ?k/t? + 1}, and that for 3?n?min{t, ?k/t?} the block intersection graph is potentially but not necessarily ne.c. The cases t = 1 and t = k are also discussed. © 2011 Wiley Periodicals, Inc. J Combin Designs 19: 85–94, 2011  相似文献   

9.
Chvátal established that r(Tm, Kn) = (m – 1)(n – 1) + 1, where Tm is an arbitrary tree of order m and Kn is the complete graph of order n. This result was extended by Chartrand, Gould, and Polimeni who showed Kn could be replaced by a graph with clique number n and order n + 1 provided n ≧ 3 and m ≧ 3. We further extend these results to show that Kn can be replaced by any graph on n + 2 vertices with clique number n, provided n ≧ 5 and m ≧ 4. We then show that further extensions, in particular to graphs on n + 3 vertices with clique number n are impossible. We also investigate the Ramsey number of trees versus complete graphs minus sets of independent edges. We show that r(Tm, Kn –tK2) = (m – 1)(n – t – 1) + 1 for m ≧ 3, n ≧ 6, where Tm is any tree of order m except the star, and for each t, O ≦ t ≦ [(n – 2)/2].  相似文献   

10.
A subset D of vertices of a graph G = (V, E) is a distance k-dominating set for G if the distance between every vertex of V ? D and D is at most k. The minimum size of a distance k-dominating set of G is called the distance k-domination number γk(G) of G. In this paper we prove that (2k + 1)γk(T) ≥ ¦V¦ + 2k ? kn1 for each tree T = (V, E) with n1 leafs, and we characterize the class of trees that satisfy the equality (2k + 1)γk(T) = ¦V¦ + 2k ? kn1. Our results generalize those of Lemanska [4] for k = 1 and of Cyman, Lemanska and Raczek [1] for k = 2.  相似文献   

11.
Ore proved in 1960 that if G is a graph of order n and the sum of the degrees of any pair of nonadjacent vertices is at least n, then G has a hamiltonian cycle. In 1986, Li Hao and Zhu Yongjin showed that if n ? 20 and the minimum degree δ is at least 5, then the graph G above contains at least two edge disjoint hamiltonian cycles. The result of this paper is that if n ? 2δ2, then for any 3 ? l1 ? l2 ? ? ? lk ? n, 1 = k = [(δ - 1)/2], such graph has K edge disjoint cycles with lengths l1, l2…lk, respectively. In particular, when l1 = l2 = ? = lk = n and k = [(δ - 1)/2], the graph contains [(δ - 1)/2] edge disjoint hamiltonian cycles.  相似文献   

12.
A nowhere-zero k-flow is an assignment of edge directions and integer weights in the range 1,…, k ? 1 to the edges of an undirected graph such that at every vertex the flow in is equal to the flow out. Tutte has conjectured that every bridgeless graph has a nowhere-zero 5-flow. We show that a counterexample to this conjecture, minimal in the class of graphs embedded in a surface of fixed genus, has no face-boundary of length <7. Moreover, in order to prove or disprove Tutte's conjecture for graphs of fixed genus γ, one has to check graphs of order at most 28(γ ? 1) in the orientable case and 14(γ ? 2) in the nonorientable case. So, in particular, it follows immediately that every bridgeless graph of orientable genus ?1 or nonorientable genus ?2 has a nowhere-zero 5-flow. Using a computer, we checked that all graphs of orientable genus ?2 or nonorientable genus ?4 have a nowhere-zero 5-flow.  相似文献   

13.
A graph is t‐tough if the number of components of G\S is at most |S|/t for every cutset SV (G). A k‐walk in a graph is a spanning closed walk using each vertex at most k times. When k = 1, a 1‐walk is a Hamilton cycle, and a longstanding conjecture by Chvátal is that every sufficiently tough graph has a 1‐walk. When k ≥ 3, Jackson and Wormald used a result of Win to show that every sufficiently tough graph has a k‐walk. We fill in the gap between k = 1 and k ≥ 3 by showing that, when k = 2, every sufficiently tough (specifically, 4‐tough) graph has a 2‐walk. To do this we first provide a new proof for and generalize a result by Win on the existence of a k‐tree, a spanning tree with every vertex of degree at most k. We also provide new examples of tough graphs with no k‐walk for k ≥ 2. © 2000 John Wiley & Sons, Inc. J Graph Theory 33:125–137, 2000  相似文献   

14.
It is shown here that a connected graph G without subgraphs isomorphic to K4 is triangulated if and only if its chromatic polynomial P(G,λ) equals λ(λ ? 1)m(λ ? 2)r for some integers m ≧ 1, r ≧ 0. This result generalizes the characterization of Two-Trees given by E.G. Whitehead [“Chromaticity of Two-Trees,” Journal of Graph Theory 9 (1985) 279–284].  相似文献   

15.
《Discrete Mathematics》2002,231(1-3):227-236
Let δ, γ, κ and α be, respectively, the minimum degree, the domination number, the connectivity and the independence number of a graph G. The graph G is 3-domination-critical if γ=3 and the addition of any edge decreases γ by 1. In this paper, we prove that if G is a 3-domination-critical graph, then ακ+2; and moreover, if κδ−1, then ακ+1. We also give a short proof of Wojcicka's result, which says that every connected 3-domination-critical graph of order at least 7 contains a hamiltonian path (J. Graph Theory 14 (1990) 205).  相似文献   

16.
rc(k) Denotes the smallest integer such that any c-edge-coloring of the rc(k) vertex complete graph has a monochromatic k-connected subgraph. For any c, k ≧ 2, we show 2c(k – 1) + 1 ≦ rc(k) < 10/3 c(k – 1) + 1, and further that 4(k – 1) + 1 ≧ r2(k) < (3 + √ (k – 1) + 1. Some exact values for various Ramsey connectivity numbers are also computed.  相似文献   

17.
Let γ(G) be the domination number of graph G, thus a graph G is k‐edge‐critical if γ (G) = k, and for every nonadjacent pair of vertices u and υ, γ(G + uυ) = k?1. In Chapter 16 of the book “Domination in Graphs—Advanced Topics,” D. Sumner cites a conjecture of E. Wojcicka under the form “3‐connected 4‐critical graphs are Hamiltonian and perhaps, in general (i.e., for any k ≥ 4), (k?1)‐connected, k‐edge‐critical graphs are Hamiltonian.” In this paper, we prove that the conjecture is not true for k = 4 by constructing a class of 3‐connected 4‐edge‐critical non‐Hamiltonian graphs. © 2005 Wiley Periodicals, Inc.  相似文献   

18.
One of the most fundamental results concerning paths in graphs is due to Ore: In a graph G, if deg x + deg y ≧ |V(G)| + 1 for all pairs of nonadjacent vertices x, y ? V(G), then G is hamiltonian-connected. We generalize this result using set degrees. That is, for S ? V(G), let deg S = |x?S N(x)|, where N(x) = {v|xv ? E(G)} is the neighborhood of x. In particular we show: In a 3-connected graph G, if deg S1 + deg S2 ≧ |V(G)| + 1 for each pair of distinct 2-sets of vertices S1, S2 ? V(G), then G is hamiltonian-connected. Several corollaries and related results are also discussed.  相似文献   

19.
The k-domination number of a graph G, γk(G), is the least cardinality of a set U of verticies such that any other vertex is adjacent to at least k vertices of U. We prove that if each vertex has degree at least k, then γk(G) ≤ kp/(k + 1).  相似文献   

20.
The concept of a (1, 2)-eulerian weight was introduced and studied in several papers recently by Seymour, Alspach, Goddyn, and Zhang. In this paper, we proved that if G is a 2-connected simple graph of order n (n ≧ 7) and w is a smallest (1, 2)-eulerian weight of graph G, then |Ew=even | n - 4, except for a family of graphs. Consequently, if G admits a nowhere-zero 4-flow and is of order at least 7, except for a family of graphs, the total length of a shortest cycle covering is at most | V(G) | + |E(G) |- 4. This result generalizes some previous results due to Bermond, Jackson, Jaeger, and Zhang.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号