首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate volume phase transition in gels immersed in mixture solvents, on the basis of a three-component Flory-Rehner theory. When the selectivity of the minority solvent component to the polymer network is strong, the gel tends to shrink with an increasing concentration of the additive, regardless of whether it is good or poor. This behavior originates from the difference of the additive concentration between inside and outside the gel. We also found the gap of the gel volume at the transition point can be controlled by adding the strongly selective solutes. By dissolving a strongly poor additive, for instance, the discontinuous volume phase transition can be extinguished. Furthermore, we observed that another volume phase transition occurs far from the original transition point. These behaviors can be well explained by a simplified theory neglecting the nonlinearity of the additive concentration.  相似文献   

2.
3.
Changes in the free‐volume parameters of polyacrylamide (PAAm) gels during the volume phase transition (VPT) were studied with the positron annihilation lifetime technique. The VPT was induced through the variation of the solvent composition in a mixture of acetone and water. The PAAm gels containing 0 and 4 mol % carboxyl groups in their polymer chains were adapted to compare the effect of the presence of ionic groups on the microscopic environment. The change of the free‐volume property is discussed on a nanoscopic scale, with attention paid to the interactions between the polymer chains and the solvent molecules. It is proven that the variations of the free‐volume parameters correlate significantly with the VPT phenomenon. The results of the free volume for both gels are well‐explained when an interaction parameter, εg, is assumed. The interpretation suggests that the state of the interactions among the components (the polymer chain, acetone, and water molecules) plays an important role in the change of the free volume of PAAm gels during the VPT. An increase of the dispersion of the free‐volume size near the VPT point was observed for the ionized PAAm gel. The broadened size distribution of the free volume of the ionized PAAm gel around the VPT point lay between those of pure water and the corresponding mixed solvent, suggesting that a local minimum of the average free‐volume size at the VPT point is caused by the increase of a specific interaction, hydrogen bonding. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 922–933, 2000  相似文献   

4.
The structure of a microemulsion mixed with polymer networks was investigated by means of small-angle neutron scattering (SANS). The system consists of nonionic surfactant, polymer network, oil, and water. The microemulsion and the polymer network employed in this work are known to undergo temperature-induced structural transition and volume phase transition, respectively. Polymer solutions and gels were made by polymerizing monomer solutions in the presence of microemulsion droplets. In the case of a mixture of an N-isopropylacrylamide (NIPA) monomer solution and a microemulsion, the NIPA monomer was found to behave as a cosurfactant. However, polymerization resulted in a phase separation to polymer-rich and -poor phases. Interestingly, SANS results indicated that a well-developed ordered structure of oil domains was formed in polymer network and the structure was very different from its parent systems. Furthermore, the system underwent two different types of structural transitions with respect to temperature. One was originated from the structural transition of microemulsion due to the change of the spontaneous curvature and the other from the volume phase transition of the NIPA gel.  相似文献   

5.
This paper describes the deformation of gels in a centrifugal field leading to a continuous equilibrium. A gel is considered to be a binary mixture of cross-linked polymer and solvent and is assumed to remain isotropic during the deformation. From the equation for the osmotically effective pressure, called swelling pressure, the thermodynamic properties of a gel can be calculated. For highly swollen gels the expression of Svedberg and Pedersen is obtained. It is shown that the complete concentration dependence of the swelling pressure in the concentration range of the maximally swollen gel up to that at the cell bottom can be measured in a single equilibrium experiment. The homogeneity of weakly cross-linked gels can be examined by means of the method described. Soluble parts which are not incorporated into the polymer network can also be detected if they are present. From the swelling pressure-concentration curves it is possible to derive the thermodynamic properties of the physically crosslinked gelatin/water gels that were investigated. These gels can be described by means of a slightly modified Flory-Huggins equation with an interaction parameter χw in the weight fraction scale, which depends linearly on concentration. The interaction parameters show a dependence on concentration which is explained by an increased branching and crosslinking of the polymer with increasing initial polymer concentration of the gels. At low initial polymer concentration, the primary chains have to aggregate to build up relatively long chains between the network junctions. The static shear modulus G which can be calculated from the network term has the same order of magnitude as the real part of the complex shear modulus which is measured at low frequency.  相似文献   

6.
Soft materials or gels are new interesting materials resulting from the combination of carbon nanotubes with ionic liquids. However, it should be noted that not all ionic liquid/carbon nanotubes combinations lead to the formation of gels. In fact, this requires using an optimum concentration of CNTs known as “critical gel concentration” (CGC) in the mixture. Up to now, this critical concentration has been determined by means of rheological measurements or by observing a change of a physical property in the new material such as density. On the basis of the high stability of gels in solvents, owing to the presence of carbon nanotubes, this paper reports for the first time a simple and fast method to determine the critical gel concentration for the formation of soft materials by means of fluorescence measurements. We have determined the critical gel concentration of four gels obtained by the combination of three different types of multi walled carbon nanotubes and one single walled carbon nanotubes with the ionic liquid 1-hexyl 3-methylimidazolium hexafluorophosphate. The main characteristics of carbon nanotubes and gels resulting of them were established by Raman spectroscopy. The proposed methodology is presented as an alternative to traditional complex rheological measurements.  相似文献   

7.
The effects of pigments contained in N‐isopropylacrylamide (NIPAM) gels on their volume‐change properties were investigated. All the NIPAM gel particles, containing various kinds and concentrations of pigments, showed a volume phase transition at 34 °C. No pigment affected the volume‐phase‐transition temperature of the NIPAM gels. As the concentration of the pigment in the NIPAM gels was increased, the amount of the volume change of the NIPAM gels was reduced. The water absorptivity of the NIPAM gels in the swollen state decreased as the pigment concentration increased, whereas the water absorptivity in the shrunken state was almost constant. Reducing the initial monomer concentration of the polymerization of the NIPAM gel increased the water absorptivity in the swollen state. With an increase in the water absorptivity, the volume changes of the NIPAM gels containing pigments were increased. Prototype light modulators in which the NIPAM gel particles containing pigment were dispersed between glass plates were fabricated. The light modulator using the gel particles with improved diameter change (d/d0 = 2.3, where d and d0 are the equilibrium diameter and the diameter of the fully shrunken state at 50 °C, respectively) exhibited a larger transmittance change from 8 to 79% than that using the gel particles before the improvement (d/d0 = 1.7; from 38 to 79%) according to temperature changes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4644–4655, 2006  相似文献   

8.
This paper aims to provide a systematic discussion based on our experimental results both previously published and unpublished, to promote better understanding of volume-phase transitions in polyelectrolyte gels. Special attention was paid to the distribution of network charges as well as to the attractive interaction among polymer segments. From looking at how these effects appear in the swelling curves, an exploration of the nature of polyelectrolyte gel transitions was attempted. Two sorts of polyelectrolyte gels, temperature-responsive ionic gels based on N-isopropylacrylamide (NIPA) and cationic poly(ethyleneimine) (PEI) gels, were mainly employed with various modifications. The charge inhomogeneity within the gel phase was created by surfactant binding, immobilized enzyme reaction and physical entrapment of polyions. The attractive interactions holding the gel in a collapsed state were studied in comparison with phase separations of the corresponding linear polyelectrolyte. The main conclusions are summarized as follows: (i) The charge inhomogeneity exhibits a large influence on the volume transition in ionic gels. (ii) Hydrogen bonding and hydrophobic association, other than electrostatic attraction, can be considered to play an important role in the segmental association. (iii) Stably associated segments via one or more of these attractive interactions causes a large hysteresis in the swelling process, in which the repulsive interaction among the fixed charges on the network is dominant as shown in the Katchalsky's model. (iv) A distribution of "neutral but hydrophilic" moieties (e.g., ion pair or salt-linkage formed between the opposite charged groups) within the gel shows a marked effect on the temperature-induced volume collapse, the aspect of which is similar to that observed in the gels with a charge inhomogeneity.  相似文献   

9.
We have performed dynamic light scattering experiments on poly(acrylamide)‐poly(acrylic acid) copolymer gels with controlled crosslink density and copolymer composition, by varying the temperature, amount and valency of added salt, pH, and solvent quality. Our systematic study provides several insights. The correlation length for the monomer density fluctuations, as inferred from the measured diffusion coefficient, is too small to be identified as the mesh size of the gel. The correlation length in an ionic gel, which is found to be smaller than that for an equivalent gel without ionization. Comparison of swelling ratio with the diffusion coefficient shows that these quantities are not simply geometrically related to each other. When a discontinuous volume phase transition is induced by gradually varying the solvent quality, the diffusion coefficient exhibits a pretransitional reduction by two orders of magnitude even before the gel collapse. These findings provoke a need for new theoretical approaches for describing the elastic modes of polyelectrolyte gels. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

10.
基于Maurer和Prausnitz的凝胶相平衡条件,建立了凝胶的溶胀模型.模型假设凝胶是以凝胶组分及凝胶吸收的溶液为核心,以弹性半渗透膜为壳的复合体.并采用UNIQUAC方程计算凝胶相及与之共存液相的Gibbs过剩自由能,采用“phantomnetwork”理论计算凝胶的弹性自由能,采用“自由体积”计算分子的尺度效应.同时以N-异丙基丙烯酰胺(IPAAm)为单体合成了IPAAm凝胶.研究了25 ℃时IPAAm凝胶在丙酮水溶液中的溶胀行为,并测定了丙酮在胶体相和与之共存液相中的分配,以检验模型的关联与预报能力.结果表明,模型预报的单体总量和交联剂浓度对凝胶溶胀的影响与实验符合得很好.而且凝胶溶胀时,能很好地预测丙酮在两相中的分配,表明模型具有很好的关联和预报能力.  相似文献   

11.
To realize polymer electrolytes with high ionic conductivity, we exploited the high ionic conductivity of an ionic liquid. In situ free radical polymerization of compatible vinyl monomers in a room temperature ionic liquid, 1-ethyl-3-methyl imidazolium bis(trifluoromethane sulfonyl)imide (EMITFSI), afforded a novel series of polymer electrolytes. Polymer gels obtained by the polymerization of methyl methacrylate (MMA) in EMITFSI in the presence of a small amount of a cross-linker gave self-standing, flexible, and transparent films. The glass transition temperatures of the gels, which we named "ion gels", decreased with increasing mole fraction of EMITFSI and behaved as a completely compatible binary system of poly(methyl methacrylate) (PMMA) and EMITFSI. The temperature dependence of the ionic conductivity of the ion gels followed the Vogel-Tamman-Fulcher (VTF) equation, and the ionic conductivity at ambient temperature reached a value close to 10(-2) S cm(-1). Similarly to the behavior of the ionic liquid, the cation in the ion gels diffused faster than the anion. The number of carrier ions, calculated from the Nernst-Einstein equation, was found to increase for an ion gel from the corresponding value for the ionic liquid itself. The cation transference number increased with decreasing EMITFSI concentration due to interaction between the PMMA matrix and the TFSI(-) anion, which prohibited the formation of ion clusters or associates, as was the case for the ionic liquid itself.  相似文献   

12.
The authors model wave propagation in swollen, chemoresponsive polymer gels that are undergoing the oscillatory Belousov-Zhabotinsky (BZ) reaction. To carry out this study, they first modify the Oregonator model for BZ reactions in simple solutions to include the effect of the polymer on the reaction kinetics. They then describe the gel dynamics through the framework of the two-fluid model. The polymer-solvent interactions that are introduced through the BZ reaction are captured through a coupling term, which is added to the Flory-Huggins model for polymer-solvent mixtures. The resulting theoretical model is then used to develop the gel lattice spring model (gLSM), which is a computationally efficient approach for simulating large-scale, two-dimensional (2D) deformations and chemical reactions within a swollen polymer network. The 2D calculations allow the authors to probe not only volume changes but also changes in the sample's shape. Using the gLSM, they determine the pattern formation and shape changes in 2D rectangular BZ gels that are anchored to a solid wall. They demonstrate that the dynamic patterns depend on whether the gel is expanded or contracted near the wall, and on the sample's dimensions. Finally, they isolate a scenario where the detachment of the gel from the wall leads to macroscopic motion of the entire sample.  相似文献   

13.
Several composite hydrogels of poly(N-isopropylacrylamide) (pNIPAAm) with sodium montmorillonite (NaMM) have been synthesized using a fixed polymer/NaMM ratio (4:1 wt./wt.), but various monomer concentrations, in order to obtain hydrogels with different degrees of swelling, and thus different clay contents in the swollen state. For comparison, unfilled pNIPAAm gels have been also prepared at the same concentrations. The equilibrium swelling behaviour of the gels has been studied both in the swollen and in the shrunk state. In the swollen state, the polymer volume fraction increases with the initial monomer concentration C0. In the shrunk state, the polymer fraction in pNIPAAm hydrogels is dependent on the specimen size and on C0, whereas in the composite gels a constant polymer content is observed. When subjected to stepwise heating from 25 to 45 °C, unfilled gels undergo only poor deswelling. By contrast, complete deswelling takes place in composite gels. The latter show half-shrinking times varying over two orders of magnitude, depending on the monomer concentration and on the procedure followed to disperse NaMM, which determine the overall dispersion state of the filler, as evidenced by transmission electron microscopy (TEM). In particular, TEM observations show clay networking above a percolation threshold near 2.5 wt.% of NaMM. The effect of the incorporation of clay on the response to thermal stimuli is discussed in terms of the ability of NaMM to hinder the hydrophobic association of pNIPAAm segments and in terms of its dispersion state. It is suggested that, above the percolation threshold, NaMM forms a hydrophilic, physical network, through which water can flow also above the volume transition temperature, where pNIPAAm acquires a hydrophobic character.  相似文献   

14.
New polymer gel electrolytes based on polyester diacrylates and LiClO4 salt solutions in organic solvents are developed for lithium ion and lithium polymer batteries with a high ionic conductivity up to 2.7 × 10?3 Ohm?1cm?1 at the room temperature. To choose the optimum liquid electrolyte composition, the dependence is studied of physico-chemical parameters of new gel electrolytes on the composition of the mixture of aprotic organic solvents: ethylene carbonate, propylene carbonate, and λ-butyrolacton. The bulk conductivity of gel electrolytes and exchange currents at the gel electrolyte/Li interface are studied using the electrochemical impedance method in symmetrical cells with two Li electrodes. The glass transition temperature and gel homogeneity are determined using the method of differential scanning calorimetry. It is found that the optimum mixture is that of propylene carbonate and λ-butyrolacton, in which a homogeneous polymer gel is formed in a wide temperature range of ?150 to +50°C.  相似文献   

15.
A novel poly(N‐isopropylacrylamide) (PNIPA)/PNIPA interpenetrating polymer network (IPN) was synthesized and characterized. In comparison with conventional PNIPA hydrogels, the shrinking rate of the IPN hydrogel increased when gels, swollen at 20 °C, were immersed in 50 °C water. The phase‐transition temperature of the IPN gel remained unchangeable because of the same chemical constituent in the PNIPA gel. The reswelling kinetics were slower than those of the PNIPA hydrogel because of the higher crosslinking density of the IPN hydrogel. The IPN hydrogel had better mechanical strength because of its higher crosslinking density and polymer volume fraction. The release behavior of 5‐fluorouracil (5‐Fu) from the IPN hydrogel showed that, at a lower temperature, the release of 5‐Fu was controlled by the diffusion of water molecules in the gel network. At a higher temperature, 5‐Fu inside the gel could not diffuse into the medium after a burst release caused by the release of the drug on the surface of the gel. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1249–1254, 2004  相似文献   

16.
The deformation of -carrageenan/water gels in a centrifugal field leading to a continuous equilibrium is described. These gels form three-dimensional physical networks. The concentration gradient and the movement of the meniscus gel/solvent during the change of the concentration in the gel phase is measured with a Schlieren optical system of an analytical ultracentrifuge. The gel is considered to be a binary elastic mixture of crosslinked polymer and solvent and is assumed to remain isotropic during the deformation. The concentration dependence of the swelling pressure in the concentration range between the maximum swollen gel and that at the cell bottom can be obtained in a single equilibrium experiment. For the avaluation of the experiments, the weight fraction of the polymer in the maximum swollen gel has been determined separately by a gravimetric method.By means of the swelling pressure-concentration curves the thermodynamic properties of the investigated -carrageenan/water gels can be calculated. The system can be described semi-empirically with a slightly modified Flory-Huggins equation with an interaction parameter w in the weight fraction scale, which depends linearly on the concentration. The dependence of the static shear modulusG on the polymer concentration follows the scalling theory of De Gennes.Dedicated to Prof. Dr. Ronald Koningsveld on the occasion of his 70th birthday  相似文献   

17.
18.
Sol–gel transition behavior of ionic liquid gel based on poly (ethylene glycol) (PEG) and ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate [EMIM][EtSO4] has been investigated under the pressure up to 250 MPa. The Temperature versus Pressure phase diagram of PEG/[EMIM][EtSO4] gel is constructed, and it indicates that the melting point is an increasing function of pressure. Based on the phase diagram, the PEG/[EMIM][EtSO4] gels are prepared by cooling under the pressure of 300 MPa and atmospheric pressure, respectively. From the differential scanning calorimetry result of the recovered samples, it is found that PEG/[EMIM][EtSO4] gel prepared under high pressure has a higher crystallinity and smaller crystal size polymer network, comparing with under atmospheric pressure. The cyclic voltammograms and impedance spectra tests indicate that the PEG/[EMIM][EtSO4] gel prepared under high pressure exhibit higher ionic conductivity comparing with atmospheric pressure. It could be speculated these excellent properties might be attributed to the loose gel structure and high ionic density induced by high pressure.  相似文献   

19.
The phase transition and critical phenomenon of equilibrium swollen poly(N-isopropylacrylamide) (NIPA) hydrogels were studied by 1H NMR spectroscopy in liquid solution mode. The quantitative NMR observation shows that the peak height and line width of polymer proton and of the HOD proton, and relaxation times of HOD proton all transitionally change as the temperature approaches the transition temperature. The relaxation times of water protons are also measured quantitatively, which shows that the temperature dependence of relaxation times of HOD on temperature before the transition is not consistent with relaxation theory based on the assumption of dominated dipolar interaction between like-spin nuclei and isotropic rotational motion. To explain the surprising relaxation behavior of HOD, we suggest that the amount of bound water in gels increases gradually with temperature at the approach of the phase transition. The pulsed-gradient spin-echo NMR experiments of NIPA gel confirm this suggestion. We believe that these results have important implications concerning the mechanism of the phase transition of NIPA hydrogels.  相似文献   

20.
Thermally stable, flexible polymer gel electrolytes with high ionic conductivity are prepared by mixing the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (C4mpyrTFSI), LiTFSI and poly(vinylidene difluoride-co-hexafluoropropylene (PVDF-HFP). FT-IR and Raman spectroscopy show that an amorphous film is obtained for high (60 %) C4mpyrTFSI contents. Thermogravimetric analysis (TGA) confirms that the polymer gels are stable below ∼300 °C in both nitrogen and air environments. Ionic conductivity of 1.9×10−3 S cm−2 at room temperature is achieved for the 60 % ionic liquid loaded gel. Germanium (Ge) anodes maintain a coulombic efficiency above 95 % after 90 cycles in potential cycling tests with the 60 % C4mpyrTFSI polymer gel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号