首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For each irrational a, 0<a<1, a particular countable graph G is defined which mirrors the asymptotic behavior of the random graph G(n, p) with edge probability p = n?a.  相似文献   

2.
For each fixed k ≥ 0, we give an upper bound for the girth of a graph of order n and size n + k. This bound is likely to be essentially best possible as n → ∞. © 2002 Wiley Periodicals, Inc. J Graph Theory 39: 194–200, 2002; DOI 10.1002/jgt.10023  相似文献   

3.
Consider partitions of the vertex set of a graph G into two sets with sizes differing by at most 1: the bisection width of G is the minimum over all such partitions of the number of “cross edges” between the parts. We are interested in sparse random graphs Gn, c/n with edge probability c/n. We show that, if c>ln 4, then the bisection width is Ω(n) with high probability; while if c<ln 4, then it is equal to 0 with high probability. There are corresponding threshold results for partitioning into any fixed number of parts. ©2001 John Wiley & Sons, Inc. Random Struct. Alg., 18, 31–38, 2001  相似文献   

4.
5.
6.
7.
8.
The paper is devoted to the problem of establishing right-convergence of sparse random graphs. This concerns the convergence of the logarithm of number of homomorphisms from graphs or hyper-graphs \(\mathbb{G }_N, N\ge 1\) to some target graph \(W\) . The theory of dense graph convergence, including random dense graphs, is now well understood (Borgs et al. in Ann Math 176:151–219, 2012; Borgs et al. in Adv Math 219:1801–1851, 2008; Chatterjee and Varadhan in Eur J Comb 32:1000–1017, 2011; Lovász and Szegedy in J Comb Theory Ser B 96:933–957, 2006), but its counterpart for sparse random graphs presents some fundamental difficulties. Phrased in the statistical physics terminology, the issue is the existence of the limits of appropriately normalized log-partition functions, also known as free energy limits, for the Gibbs distribution associated with \(W\) . In this paper we prove that the sequence of sparse Erdös-Rényi graphs is right-converging when the tensor product associated with the target graph \(W\) satisfies a certain convexity property. We treat the case of discrete and continuous target graphs \(W\) . The latter case allows us to prove a special case of Talagrand’s recent conjecture [more accurately stated as level III Research Problem 6.7.2 in his recent book (Talagrand in Mean Field Models for Spin Glasses: Volume I: Basic examples. Springer, Berlin, 2010)], concerning the existence of the limit of the measure of a set obtained from \(\mathbb{R }^N\) by intersecting it with linearly in \(N\) many subsets, generated according to some common probability law. Our proof is based on the interpolation technique, introduced first by Guerra and Toninelli (Commun Math Phys 230:71–79, 2002) and developed further in (Abbe and Montanari in On the concentration of the number of solutions of random satisfiability formulas, 2013; Bayati et al. in Ann Probab Conference version in Proceedings of 42nd Ann. Symposium on the Theory of Computing (STOC), 2010; Contucci et al. in Antiferromagnetic Potts model on the Erdös-Rényi random graph, 2011; Franz and Leone in J Stat Phys 111(3/4):535–564, 2003; Franz et al. in J Phys A Math Gen 36:10967–10985, 2003; Montanari in IEEE Trans Inf Theory 51(9):3221–3246, 2005; Panchenko and Talagrand in Probab Theory Relat Fields 130:312–336, 2004). Specifically, Bayati et al. (Ann Probab Conference version in Proceedings of 42nd Ann. Symposium on the Theory of Computing (STOC), 2010) establishes the right-convergence property for Erdös-Rényi graphs for some special cases of \(W\) . In this paper most of the results in Bayati et al. (Ann Probab Conference version in Proceedings of 42nd Ann. Symposium on the Theory of Computing (STOC), 2010) follow as a special case of our main theorem.  相似文献   

9.
Let denote the maximum average degree (over all subgraphs) of G and let χi(G) denote the injective chromatic number of G. We prove that if , then χi(G)≤Δ(G)+1; and if , then χi(G)=Δ(G). Suppose that G is a planar graph with girth g(G) and Δ(G)≥4. We prove that if g(G)≥9, then χi(G)≤Δ(G)+1; similarly, if g(G)≥13, then χi(G)=Δ(G).  相似文献   

10.
11.
12.
13.
A linear coloring is a proper coloring such that each pair of color classes induces a union of disjoint paths. We study the linear list chromatic number, denoted , of sparse graphs. The maximum average degree of a graph G, denoted mad(G), is the maximum of the average degrees of all subgraphs of G. It is clear that any graph G with maximum degree Δ(G) satisfies . In this paper, we prove the following results: (1) if and Δ(G)≥3, then , and we give an infinite family of examples to show that this result is best possible; (2) if and Δ(G)≥9, then , and we give an infinite family of examples to show that the bound on cannot be increased in general; (3) if G is planar and has girth at least 5, then .  相似文献   

14.
15.
A proper coloring of the vertices of a graph is called a star coloring if the union of every two color classes induces a star forest. The star chromatic number χs(G) is the smallest number of colors required to obtain a star coloring of G. In this paper, we study the relationship between the star chromatic number χs(G) and the maximum average degree Mad(G) of a graph G. We prove that:
  • 1. If G is a graph with , then χs(G)≤4.
  • 2. If G is a graph with and girth at least 6, then χs(G)≤5.
  • 3. If G is a graph with and girth at least 6, then χs(G)≤6.
These results are obtained by proving that such graphs admit a particular decomposition into a forest and some independent sets. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 201–219, 2009  相似文献   

16.
We generalize all the results obtained for maximum integer multiflow and minimum multicut problems in trees by Garg, Vazirani and Yannakakis [N. Garg, V.V. Vazirani, M. Yannakakis, Primal-dual approximation algorithms for integral flow and multicut in trees, Algorithmica 18 (1997) 3–20] to graphs with a fixed cyclomatic number, while this cannot be achieved for other classical generalizations of trees. We also introduce thek-edge-outerplanar graphs, a class of planar graphs with arbitrary (but bounded) tree-width that generalizes the cacti, and show that the integrality gap of the maximum edge-disjoint paths problem is bounded in these graphs.  相似文献   

17.
In this paper, we show the equivalence of somequasi-random properties for sparse graphs, that is, graphsG with edge densityp=|E(G)|/( 2 n )=o(1), whereo(1)→0 asn=|V(G)|→∞. Our main result (Theorem 16) is the following embedding result. For a graphJ, writeN J(x) for the neighborhood of the vertexx inJ, and letδ(J) andΔ(J) be the minimum and the maximum degree inJ. LetH be atriangle-free graph and setd H=max{δ(J):JH}. Moreover, putD H=min{2d H,Δ(H)}. LetC>1 be a fixed constant and supposep=p(n)≫n −1 D H. We show that ifG is such that
(i)  deg G (x)≤C pn for allxV(G),
(ii)  for all 2≤rD H and for all distinct verticesx 1, ...,x rV(G),
,
(iii)  for all but at mosto(n 2) pairs {x 1,x 2} ⊆V(G),
, then the number of labeled copies ofH inG is
.
Moreover, we discuss a setting under which an arbitrary graphH (not necessarily triangle-free) can be embedded inG. We also present an embedding result for directed graphs. Research supported by a CNPq/NSF cooperative grant. Partially supported by MCT/CNPq through ProNEx Programme (Proc. CNPq 664107/1997-4) and by CNPq (Proc. 300334/93-1 and 468516/2000-0). Partially supported by NSF Grant 0071261. Supported by NSF grant CCR-9820931.  相似文献   

18.
We derive an expression of the form c ln n + o(ln n) for the diameter of a sparse random graph with a specified degree sequence. The result holds asymptotically almost surely, assuming that certain convergence and supercriticality conditions are met, and is applicable to the classical random graph Gn,p with np = Θ(1) + 1, as well as certain random power law graphs. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2007  相似文献   

19.
The chromatic threshold of a graph H with respect to the random graph G (n, p ) is the infimum over d > 0 such that the following holds with high probability: the family of H‐free graphs with minimum degree has bounded chromatic number. The study of was initiated in 1973 by Erd?s and Simonovits. Recently was determined for all graphs H . It is known that for all fixed , but that typically if Here we study the problem for sparse random graphs. We determine for most functions when , and also for all graphs H with © 2017 Wiley Periodicals, Inc. Random Struct. Alg., 51, 215–236, 2017  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号