首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高分子共混物中氢键的存在能促进共混组分具有更好的可混和性.因此,研究高分子共混物中的氢键对高分子的共混改性具有重要的理论和实用价值.本文是<高分子共混物中氢键的Ⅰ.氢键的特征描述以及影响因素>的下篇,将继续介绍高分子共混物中氢键的作用,主要包括氢键对高分子共混物性能的影响以及主要的引入氢键的方法.特别地,本文通过将高分子共混物分为合成高分子与合成高分子共混物,合成高分子与天然高分子共混物以及合成高分子与其它物质共混物,总结了氢键存在对共混物性能的影响.  相似文献   

2.
The effects of several low molecular weight compounds with hydroxyl groups on the physical properties of poly(ε‐caprolactone) (PCL) were investigated by Fourier transform infrared (FTIR) spectroscopy and high‐resolution solid‐state 13C NMR. PCL and 4,4′‐thiodiphenol (TDP) interact through strong intermolecular hydrogen bonds and form hydrogen‐bonded networks in the blends at an appropriate TDP content. The thermal and dynamic mechanical properties of PCL/TDP blends were investigated by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis, respectively. The melting point of PCL decreased, whereas both the glass‐transition temperature and the loss tangent tan δ of the blend increased with an increase in TDP content. The addition of 40 wt % TDP changed PCL from a semicrystalline polymer in the pure state to a fully amorphous elastomer. The molecules of TDP lost their crystallizability in the blends with TDP contents not greater than 40 wt %. In addition to TDP, three other PCL blend systems with low molecular weight additives containing two hydroxyl groups, 1,4‐dihydroxybenzene, 1,4‐di‐(2‐hydroxyethoxy) benzene, and 1,6‐hexanediol, were also investigated with FTIR and DSC, and the effects of the chemical structure of the additives on the morphology and thermal properties are discussed. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1848–1859, 2000  相似文献   

3.
In a blend, the interfacial interaction between the component phases can be effectively utilized to bring about homogeneous mixing and unique performances. While in conventional blends, preserving the morphology of the melt mixed state is unfeasible because of the strong thermodynamic tendency of the components to phase separate, herein, we report the intermolecular interaction of two hydrogen bonded polymers such as a barrier polymer poly(ethylene-co-vinyl alcohol) (EVOH) with an ionic polymer in their blends, which work symbiotically to achieve the desirable characteristics. We demonstrate the creation of a unique ellipsoid microfibrilliar morphology and melt exfoliation of one polymer in the blends through intermolecular interaction and achieve high oxygen barrier characteristics. Scanning thermal microscopy and scanning electron microscopy investigations confirm the presence of such unique morphology. The interfacial interaction and formation of interphase was evident from the local thermal analysis results combined with photoacoustic Fourier transform infrared spectroscopy (PA-FTIR). PA-FTIR confirms the chemical nature of the interaction, while the differential scanning calorimetry results indicate modification of the EVOH phase by the ionomer. The shift of Tg and broadening of the tan delta curve is evident from dynamic mechanical analysis confirming the interaction of the blend components. The blend B(60) with microfibrillar morphology shows fourfold drop in oxygen permeability indicating the role of interfacial interaction and desired morphology.  相似文献   

4.
We report the results of experimental infrared and thermal analysis studies of binary miscible blends of poly(vinyl methyl ether) (PVME) with an ethyl methacrylate-co-4-vinyl phenol (EMAVPh) copolymer. This is a complex blend system, involving multiple specific interaction sites. Using the concept of competing equilibria we show that the equilibrium constant describing hydrogen bonding between the OH group of EMAVPh and the ether oxygen of PVME can be determined from quantitative infrared spectroscopic analysis of the fraction of hydrogen bonded carbonyl groups present in miscible binary blends.  相似文献   

5.
New hydrogen bonded blends of LC copolymers containing functional carboxyl groups with a low molecular mass pyridine-containing dopant were obtained and the orientational, optical and elastic properties of the blends were measured using the Fréedericksz method of threshold transitions in a magnetic field. The averaged order parameter S of the hydrogen bonded blends is found to be lower than that of the initial functionalized LC polymers. Furthermore, a considerable increase in the K3/K1 ratio is observed caused by an increment in the average 'effective' length of the hydrogen bonded mesogenic group. For the first time it is proven that LC blends with hydrogen bonded mesogenic groups obey the same main relationship of orientational elastic deformations as common nematic LC polymers with covalent bonding of mesogenic side groups.  相似文献   

6.
Elastomeric blends based on ethylene propylene diene (EPDM) rubber as a primary polymer have been investigated for the thermal insulation of case‐bonded solid rocket motors (SRMs) cast with composite propellant containing hydroxy terminated polybutadiene (HTPB) as a polymeric binder. EPDM rubber found as an attractive candidate for the thermal insulation of case‐bonded SRM due to the advantages such as low specific gravity, improved ageing properties, and longer shelf life. In spite of these advantages, EPDM, a non‐polar rubber, lacks sufficient bonding with the propellant matrix. Bonding properties are found to improve when EPDM is blended with other polar rubbers like polychloroprene, chlorosulphonated polyethylene (CSE), etc. This type of polar polymer when blended with EPDM rubber enhances the insulator‐to‐propellant interface bonding. In the present work, an attempt has been made to study the properties of EPDM–CSE based insulator by incorporating HTPB, a polar polymer as well as a polymeric binder, as an additive to the EPDM–CSE blend by varying the HTPB concentration. Blends prepared were cured and characterized for rheological, mechanical, interface, and thermal properties to study the effect of HTPB addition. This paper reports the preliminary investigation of the properties of EPDM–CSE blend containing HTPB, as a novel and futuristic elastomeric insulation for case‐bonded SRM containing HTPB as propellant binder. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
The degradation of the binary polymer blends, poly(vinyl acetate)/poly(vinyl chloride), poly(vinyl acetate)/poly(vinylidene chloride) and poly(vinyl acetate)/polychloroprene has been studied by using thermal volatilization analysis, thermogravimetry, evolved gas analysis for hydrogen chloride and acetic acid, and spectroscopic methods. For the first two systems named, strong interaction occurs in the degrading blend, but the polychloroprene blends showed no indication of interaction. In the PVA/PVC and PVA/PVDC blends, hydrogen chloride from the chlorinated polymer causes substantial acceleration in the deacetylation of PVA. Acetic acid from PVA destabilizes PVC but has little effect in the case of PVDC because of the widely differing degradation temperatures of PVA and PVDC. The presence of hydrogen chloride during the degradation of PVA results in the formation of longer conjugated sequences, and the regression in sequence length at high extents of deacetylation found for PVA degraded alone is not observed.  相似文献   

8.
氢键型超分子聚合物的合成、结构与应用   总被引:2,自引:0,他引:2  
氢键型超分子聚合物是重复单元经氢键相互作用连接在一起的阵列,可生成液晶态,多样化的几何形状和高有序的凝聚态结构。氢键的温度敏感性和可逆性导致氢键型超分子聚合物具有和传统共价键结合的聚合物不同的性能。氢键型超分子聚合物是一类动态的智能型功能高分子材料,可在光化学、光电转换、非线性光学、弹性体、水凝胶和生物医用工程等领域广泛应用。本文从氢键型超分子聚合物化学(合成与机理)、物理(结构与性能)和工程(加工与应用)三个方面介绍氢键型超分子聚合物的进展。  相似文献   

9.
孙平川 《高分子科学》2012,30(6):900-915
Glass transition behavior of hydrogen bonded polymer blends of poly(vinyl phenol)(PVPh) and poly(ethylene oxide)(PEO) is systematically investigated using normal differential scanning calorimetry(DSC) and recently developed multifrequency temperature-modulated DSC(TOPEM),in combination with Fourier transform infrared spectroscopy(FTIR) and nuclear magnetic resonance(NMR) techniques,focusing on the effect of the PEO molecular weight on the spatial and dynamic heterogeneity.It is found,for the first time,that both the glass transition temperature(T_g) and activity energy(E_a) of the blends strongly depend on PEO molecular weight,and a common turning point,which separates the rapid and slow increasing regions,can be found.The interchain hydrogen bonding interactions,both determined by FTIR measurements and obtained from the Kwei equation,decrease with increasing PEO molecular weight,indicating a decrease of the componential miscibility.A series of parameters related to the microscopic spatial and dynamic heterogeneity,such as the activity energy, fragility,nonexponential factor and the size of cooperatively rearranging regions,are calculated from frequency dependency complex heat capacity measured using TOPEM.It is found that each of these parameters monotonically changes with increasing the PEO molecular weight during the glass transition process,demonstrating that hydrogen bonding interaction is the key factor in controlling the spatial and dynamic heterogeneity,thus the glass transition.NMR relaxation results reveal the existence of obvious phase separation large than 5 nm,implying that the cooperatively rearranging regions should be closely related to the interphase region between the two components.The above obtained origin and evolution of spatial and dynamic heterogeneity provide a new insight into the glass transition behavior of polymer blends.  相似文献   

10.
The hydrogen‐bonding strength of poly(?‐caprolactone) (PCL) blends with three different well‐known hydrogen‐bonding donor polymers [i.e., phenolic, poly(vinyl‐phenol) (PVPh), and phenoxy] was investigated with differential scanning calorimetry and Fourier transform infrared spectroscopy. All blends exhibited a single glass‐transition temperature with differential scanning calorimetry, which is characteristic of a miscible system. The strength of interassociation depended on the hydrogen‐bonding donor group in the order phenolic/PCL > PVPh/PCL > phenoxy/PCL, which corresponds to the q value of the Kwei equation. In addition, the interaction energy density parameter calculated from the melting depression of PCL with the Nishi–Wang equation resulted in a similar trend in terms of the hydrogen‐bonding strength. Quantitative analyses on the fraction of hydrogen‐bonded carbonyl groups in the molten state were made with Fourier transform infrared spectroscopy for all systems, and good correlations between thermal behaviors and infrared results were observed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1348–1359, 2001  相似文献   

11.
The aim of this paper is to study the miscibility and the thermal degradation of PVC/PMMA blends. For that purpose, blends of variable compositions from 0 to 100 wt% were prepared with and without plasticizer. Their physico-chemical characterization was carried out by differential scanning calorimetric analysis (DSC) and Fourier transform infrared spectroscopy (FTIR). Their thermal degradation under nitrogen at 185°C was studied and the HCl evolved from PVC was measured by the pH method. Degraded samples were characterized, after purification, by FTIR and UV-visible spectroscopy. The DSC analysis showed polymer miscibility up to 60 wt% of PMMA. This miscibility is due to a specific interaction of hydrogen bonding type between carbonyl groups (C=O) of PMMA and hydrogen from (CHCl) groups of PVC as evidenced by FTIR analysis. On the other hand, it was found that PMMA exerted a stabilizing effect on the thermal degradation of PVC by reducing the zip dehydrochlorination and by leading to the formation of short polyenes.  相似文献   

12.
The thermally induced phase separation behavior of hydrogen bonded polymer blends, poly(n-hexyl methacrylate) (PHMA) blended with poly(styrene-co-vinyl phenol) (STVPh) random copolymers having various vinyl phenol contents, was studied by temperature modulated differential scanning calorimetry (TMDSC).The enthalpy of phase separation was determined to be about 0.5 cal g–1 for one of the blends. A phase diagram was constructed from the TMDSC data for one of the blends. The kinetics of phase separation was studied by determining the phase compositions from the glass transition temperatures of quenched samples after phase separation. Subsequently, the phase separated samples were annealed at temperatures below the phase boundary to observe the return to the homogeneous state.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

13.
We apply broadband dielectric relaxation spectroscopy to probe the dynamics of hydrogen bonded polymer blends. A copolymer consisting of 2,3-dimethylbutadiene (DMB) [86%] and p-(hexafluoro-2-hydroxyl-2-propyl)styrene (HFS) [14%] was synthesized and blended with poly(vinylmethyl ether) (PVME). The copolymer is capable of forming strong intermolecular hydrogen bonds, while minimizing the degree of intramolecular associations, and its blends with PVME are predicted to be miscible over the entire composition range. Two segmental processes, α and α1, are present in blends containing 26, 50, and 76 weight percent copolymer. The slower process (α1) is assigned to the segmental motion of the intermolecularly associated copolymer, and the faster process (α) to segmental motions of PVME modified by the HFS:DMB copolymer. A relaxation associated with residual water is present in the glassy state. A local process due to motions of the PVME ether groups (β) is also present in the glassy state, and does not change with blend composition.  相似文献   

14.
DSC analysis of wax/polymer blends is carried out between 270 and 420 K. Calibration for melting point and enthalpy is normally carried out using indium (melting point 430 K), which is unsatisfactory for these materials. IUPAC organic standards covering this range tend to sublime and their onset temperatures are variable. Pure alkanes have similar thermal characteristics to wax/polymer blends and some have been well characterised by adiabatic calorimetry. They are being investigated as alternative secondary calibration standards to give more accurate thermal characterisation of wax/polymer blends. Also,n-triacontane can be used to check DSC resolution.  相似文献   

15.
The conditions of processing and gas sensing of ­polyaniline (PANi) blends with polyvinyl acetate (PVAc), polystyrene (PS) and polyvinyl chloride (PVC) were investigated. Flexible, free‐standing and stretchable films of various blends compositions were obtained by casting. The mechanisms of the conducting blends response to a selection of gases and vapours were investigated using two techniques: measurement of conductance and mass changes using a four‐point probe method and X‐ray fluorescence (XRF) device, respectively. These responses to toxic gases and vapours are better explained by polymer blends than homopolymers. Prepared films were exposed to hydrogen halides, hydrogen cyanide, halogens, monochloroacetic acid (MCAA), 1‐3‐5 trichloromethyl benzene (TCMB), methylbenzyl bromide (MBB), bromoacetone (BA) and cyanogen bromide (CB). The changes in conductivity of various polymer frequently observed are partly due to one stage in the two‐stage sorption perhaps involving the swelling of the polymer and then diffusion of gases into polymer chains. The swelling of polymers is a slow process, therefore, we have pre‐swelled polymer films which tend to decrease the response times of blends in respect to gases. The structures of the blends are examined by STA (TGA & DSC) and SEM studies. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
The thermal behaviors of three pentaerythritol tetranitrate (PETN) base polymer bonded explosives (PBX), Detasheet A (EL506A, red) and Datasheet C (EL506C, yellow-green) that supply by DuPont Co., PBXN-301 were investigated using thermal techniques in this work. The thermal properties of PETN base polymer bonded explosives, such as vacuum thermal stability (VTS), time to ignition, auto-ignition and shelf life of PBX that calculation from Arrhenius equation by the length of time for 5% decomposition were also examined. By comparing the thermal properties, VTS and shelf life of PETN base polymer bonded explosives, the application and storage of Datasheet C (EL506C, yellow-green) should be considered carefully, owing to the ingredients of Datasheet C (EL506 C, yellow-green) containing nitrocellulose. Binders that using in this study seems play no significant effect on the decomposition for polymer bonded explosives, because the decomposition temperature of binders is always higher than that of PETN.  相似文献   

17.
By progressively increasing the hydrogen bonding interaction, otherwise immiscible polymer blends composed of modified polystyrene and poly(alkyl methacrylate) can achieve miscibility and complexation successively. The differences in chain arrangement between the states of mere miscibility and complex can be detected by a modified NRET fluorescence technique. Immiscibility-miscibility-complexation transitions have been proved to be of generality for polymer blends with controllable hydrogen bonding.  相似文献   

18.
Ionic conducting polymer blends capable of supporting proton conduction from −40°C to 40 °C have been developed. These proton-conducting polymer blends have been used to fabricate hydrogen sensors that are capable of operating at room temperature without the need for an external supply of water vapor. Two sensor designs, both potentiostatic, are being investigated: the first uses a gaseous reference source, and the second a solid state palladium hydride reference. These sensors measure accurately the hydrogen concentration to better than 1%, have a response time of less than 6 s and are not adversely affected by most potential poisons.  相似文献   

19.
采用氯仿/乙醇共沸溶液浇铸法制备了混合均匀的聚L-乳酸/聚(天冬氨酸-co-乳酸)共混物(PLLA/PAL)体系.研究了PLLA/PAL共混体系的热性能、结晶行为、形态结构和力学性能,评价了PLLA和PAL之间的相容性.结果表明,PAL对PLLA的结晶行为和热性能产生了较大的影响,共混物的结晶度较低,共混体系中部分PAL会进入PLLA球晶的片晶而导致PLLA球晶结构不完善,熔点降低.PAL的含量小于20%的PLLA/PAL共混物的拉伸强度和断裂延伸率均高于纯PLLA.PLLA和PAL分子链相互缠结,产生的氢键使分子链间存在较强的相互作用,具有较好的相容性.  相似文献   

20.
As we have reported recently, the application of association models has provided a theoretical basis for the calculation of the free energy changes and phase diagrams of binary polymer blends in which hydrogen bonding plays a significant role. Here we report theoretical calculations of spinodal phase diagrams of a series of polyisophthalamide-polyether blends and compare the predictions with experimental observations of the miscibility of these polymer blend systems. The general agreement between theory and experiment is very encouraging and has important ramifications to discussions of polymer-induced crystallnity, the minimum number of hydrogen bonding sites necessary to ensure significant molecular mixing, and the effect of hydrogen bonding on the breadth of “miscibility windows.”  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号