首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Direct-current pulsed plasma treatment (DPPT) followed by thermal-induced graft polymerization with acrylic acid (AA) was used to modify poly(ethylene terephthalate)/polyethylene (PET/PE) non-woven fabric (NWF) in this study. The water contact angle of plasma modified NWF decreased sharply with DPPT time in 4 s. The water content of the NWF increased with DPPT time and levelled off after 30 s. Chemical analysis by X-ray photoelectron spectroscopy (XPS) indicated that the surface property of modified NWF could be maintained for more than 8 months under ambient conditions and could be further improved by grafting with acrylic acid. The concentration of AA in PET/PE-g-AA NWF increased both with the monomer concentration and the plasma treatment time. The maximum grafting density was 1.17 μmol/cm2 with 40 s DPPT and 20% (w/w) AA. Improved biocompatibility of the modified NWF was confirmed with 3T3 fibroblast cells where cell viability was analyzed by MTT assays. More cells were found to attach to the modified NWF with higher growth rates, indicating that an improvement in surface properties by DPPT followed by graft polymerization of AA is beneficial for cell attachment and growth. A much more uniform cell distribution was found within the modified NWF from confocal laser scanning microscope observations.  相似文献   

2.
The surfaces of ozone-pretreated polycarbonate films were subjected to further modification by thermally induced graft copolymerization with acrylic acid (AAc), sodium salt of styrene sulfonic acid (NaSS), N,N-dimethylacrylamide (DMAA), N,N-(dimethylamino)ethyl methacrylate (DMAEMA) and 3-dimethyl(methacryloyl ethyl)-ammonium propanesulfonate (DMAPS) monomers. The structure and composition at the copolymer interface were studied by angle-resolved X-ray photoelectron spectroscopy (XPS). For polycarbonate films with a substantial amount of grafted polymer, the hydrophilic graft penetrates or becomes partially submerged beneath a thin surface layer of dense substrate chains. This microstructure was further supported by the water contact angle measurements. Adhesive-free adhesion studies revealed that the AAc, DMAA or DMAPS graft copolymerized polycarbonate film surface adhered strongly to another similarly modified surface (homo-interface) when brought into direct contact in the presence of water and subsequently dried. The development of the lap shear strength is dependent on the concentration of the surface graft, the microstructure of the grafted surface, the adhesion (drying) time, and the nature of the interfacial interaction. The simultaneous presence of chain entanglement and electrostatic interaction readily results in substantially enhanced adhesion strengths between two DMAPS graft copolymerized surfaces or between an AAc and a DMAA graft copolymerized surface (hetero-interface). XPS analyses of the delaminated surfaces suggest that failure occurred cohesively below the graft-substrate interface. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 357–366, 1998  相似文献   

3.
The surface of low density polyethylene (LDPE) was modified by grafting a photoinitiator on it, after an Ar plasma treatment. The functionalisation was characterized by contact angle measurements, XPS analyses and AFM. The grafted LDPE was then coated with a UV-curable formulation based on highly fluorinated oligomers. Although the surface tension of the coating is very low, a good adhesion onto the substrate was obtained due to the surface treatment which was applied.  相似文献   

4.
Surface analysis of corrosion inhibitor films by XPS and ToFSIMS   总被引:1,自引:0,他引:1  
In recent years developments in the capabilities of techniques such as XPS and static SIMS have led to wider application of these methods for the characterisation of industrial materials. After a brief discussion of recent key developments of these techniques, this paper presents a selection of results from research work at our laboratory in the characterisation of organic film-forming corrosion inhibitors on a range of metal substrates which illustrate the nature of the information available. The inherent advantage ofsurface sensitivity and the advantages of a multi-technique approach for the evaluation of surface molecular structure from complex organic compounds is discussed. The additional benefits for analysis offered by the latest developments in technique are also demonstrated.  相似文献   

5.
The surfaces of Ar plasma-pretreated polytetrafluoroethylene (PTFE) films are further functionalized via UV-induced graft copolymerization with amphoteric N,N′-dimethyl(methacryloylethyl)ammonium propansulfonate (DMAPS) either in Ar atmosphere, or under atmospheric conditions and in the absence of a polymerization initiator. The so-modified PTFE films from either process are capable of exhibiting adhesive-free adhesion or auto-adhesion with one another when brought into intimate contact in the presence of a small quantity of water. The lap shear adhesion strength increases with increasing graft concentration and can readily exceed the yield strength of the PTFE substrate. Two plasma-pretreated PTFE films also readily undergo thermal graft copolymerization with concurrent lamination when lapped together in the presence of a small quantity of the DMAPS monomer solution at elevated temperature in the atmosphere. The surface compositions of the graft-copolymerized PTFE films and the delaminated surfaces were characterized by X-ray photoelectron spectroscopy (XPS). In most cases, adhesional failure occurred near the graft-substrate interphase. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 3107–3114, 1998  相似文献   

6.
The modification of a surface at the molecular level with precise control of the building blocks generates an integrated molecular system. This field has progressed rapidly in recent years through the use of self-assembled monolayer (SAM) interfaces. Recent developments on surface-initiated chemical reactions, functionalization, and graft polymerization on SAM interfaces are emphasized in the present review. A number of surface modifications by grafting are reviewed. The grafting of polyaniline on a glass surface, previously modified with a silane self-assembled monolayer (SAM), is examined in detail for both planar and 3-D systems, such as fibers, nanoparticles, and even polymer patterned surfaces. We also discuss the graft polymerization of water-soluble polymers on the surface of silicon nanoparticles, which generate stable aqueous colloidal solutions and have numerous applications. Finally, we compare and review some surface-modification techniques on the surfaces of polymers, such as two-solvent entrapment, polymer blending, and chemical grafting, which improve their biocompatibility.  相似文献   

7.
Polyester fabric was treated by corona discharge irradiation at different voltages. The treated fabric showed increased wicking and hydrophilic properties and the properties can be preserved for a long time. Dyeing of the treated fabric showed that dyeing speed and the dye-uptake were improved. Surface affinity between the treated fabric surface with modified starch sizing was also confirmed to be increased. This is generally useful for the sizing of polyester staple yarn and the polyester fabric dyeing. All the results are supposed due to the improved hydrophilic properties produced by the corona discharge treatment.  相似文献   

8.
Surface modification of segmented poly(ether urethane) (SPEU) by graft copolymerization with N,N′-dimethyl-N-methacryloyloxyethyl-N-(3-sulfopropyl) ammonium (DMMSA), a zwitterionic sulfobetaine structure, was conducted. A simple two-step procedure for grafting of DMMSA onto the surface of SPEU film was used. The surface was first treated with ozone to introduce active hydroperoxide groups. The active surface was then exposed to the DMMSA solution in the sealed tube. Grafted SPEU film was characterized by ATR–FTIR, XPS and contact angle measurement. ATR–FTIR and XPS investigations confirmed the graft copolymerization. The monomer concentration, copolymerization temperature and time were varied to maximize the efficiency of DMMSA grafting. The equilibrium water content (EWC) and contact angle measurements showed that the hydrophilicity of the film had been greatly improved. The blood compatibility of the grafted films was evaluated by platelet adhesion in platelet rich plasma (PRP), deposits in blood control and protein adsorption in bovine fibrinogen using SPEU film as the control. No platelet adhesion and no thrombus were observed for the grafted films incubated in PRP for 300 min and in blood for 120 min, respectively. The protein adsorption was reduced on the grafted films after incubation in bovine fibrinogen for 120 min. These results proved that improved blood compatibility was obtained by grafting this new zwitterionic sulfobetaine structure monomer onto SPEU film.  相似文献   

9.
To improve the wettability and adhesion, graft polymerization of acrylamide (AAm) and glycidyl methacrylate (GMA) was performed onto the surface of ultra-high modulus polyethylene (UHMPE) fiber pretreated with Ar plasma. Following the plasma treatment and the subsequent exposure to air to introduce peroxides onto the fiber surface, graft polymerization onto the UHMPE fiber was allowed to proceed from the polymer peroxides either in deaerated monomer solution at an elevated temperature (degassing method), or in aerated monomer solution containing riboflavin at 30°C under UV irradiation (photoinduction method). The monomer solution was prepared from water and dioxane for AAm and GMA, respectively. After rigorous removal of homopolymers, surface analysis of the grafted fibers was performed with ATR-FTIR and XPS, which revealed that PAAm and PGMA chains were grafted in the surface region of fibers. The grafting rate of PAAm by the photoinduction method was much higher than that by the degassing method when compared at the same concentration of the AAm solution. The amount of PGMA grafted was greatly affected by UV irradiation time, but depended on plasma treatment time to an insignificant extent if the treatment was carried out for longer than 30 s. Reaction of propylamine with the PGMA-grafted surface resulted in the appearance of a nitrogen peak in the XPS spectrum, suggesting the presence of epoxy groups on the surface of PGMA grafted fiber. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
A hydrophilic polymer, poly(N-vinyl-2-pyrrolidone), was tethered on the surface of polypropylene microfiltration membrane (PPMM) by UV photo-assisted and γ-ray pre-irradiation induced graft polymerizations. Results revealed that the γ-ray pre-irradiation graft polymerization was more efficient in view of the grafting degree. The chemical changes of the membrane surface were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Pure water contact angle on poly(N-vinyl-2-pyrrolidone)-grafted PPMM decreased with the increase of grafting degree, which indicated an enhanced hydrophilicity for the modified membrane. Both bovine serum albumin adsorption and static platelets adhesion were measured to evaluate the bio-compatibility of the poly(N-vinyl-2-pyrrolidone)-modified PPMM. The statistical amounts of adsorbed bovine serum albumin and adhered platelets on unit membrane area decreased significantly, which to a certain degree demonstrated that the hemocompatibility of PPMM was improved. The N2 permeability and the mean pore diameters of different PPMMs increased at first, then decreased after certain grafting degree. The changes of water flux followed a similar tendency. These indicated that at low grafting degree pore degradation induced by γ-ray irradiation had a major impact on permeability, while this was overcompensated by the grafted polymer at high grafting degrees.  相似文献   

11.
低温等离子体处理聚酯(PET)表面润湿性与表面结构的研究   总被引:11,自引:0,他引:11  
研究了O2、N2、He、Ar、H2和CH4气体低温等离子体改性聚酯(PET)的表面润湿性与表面结构的关系.用已知表面张力的液体测定接触角,作Zisman曲线,求得试样的临界表面张力γc;并按扩展的Fowkes式计算试样的表面张力γs及其三组分值γsa(色散力)、γsc(偶极矩力)和γ(氢键力),发现经O2、N2、He和Ar等离子体短时间处理的聚酯表面自由能显著增大,表面润湿性增强,主要是聚酯表面张力的氢键力成分的贡献,X射线光电子能谱分析表明,这是由于聚酯表面含氧或含氮极性基团增加所致.  相似文献   

12.
Fluoropolymer films have been deposited in the glow and afterglow regions of radio frequency glow discharges fed with C2F6−H2 mixtures. Structure, growth rate, composition, and wettability of the films have been investigated by means of atomic force microscopy, electron spectroscopy for chemical analysis, secondary ion mass spectrometry, and water contact angle measurements.125I labeled baboon fibrinogen in baboon plasma has been used to study the adsorption of the protein onto the films. Protein retention, i.e., the binding affinity of the adsorbed protein, has been examined by elution with a sodium dodecyl sulfate solution. Adsorption and retention of fibrinogen were correlated using multivariate statistical methods with the wettability, the degree of film fluorination, and the CF x (1≤x≤3) group distribution of the coatings. This correlation identified the influence of each variable on the adsorption and retention of fibrinogen onto these substrates. These variables or surface properties can be easily balanced by properly tuning the experimental conditions of the glow discharge deposition process.  相似文献   

13.
Surface modification of Ar-plasma-pretreated polyimide (PI) films (Kapton® HN films) via UV-induced graft copolymerization with 1-vinylimidazole (VIDz), 4-vinylpyridine (4VP), and 2-vinylpyridine (2VP) under atmospheric conditions was carried out to improve their adhesion with the electrolessly deposited Cu. The surface compositions of the graft-copolymerized PI films were characterized by X-ray photoelectron spectroscopy. The adhesion strength of the electrolessly deposited Cu on the surface-graft-copolymerized PI film was affected by the type of monomers used for graft copolymerization and the graft concentration. T-peel adhesion strengths of about 15, 10, and 6?N/cm were obtained for the Cu/graft-modified PI assemblies involving, respectively, the VIDz, 4VP, and 2VP graft-copolymerized PI films. These adhesion strengths are much higher than those obtained for assemblies involving electrolessly deposited Cu on pristine or on Ar-plasma-treated PI films. The adhesion strengths involving the VIDz and 4VP surface-graft-copolymerized PI films are also higher than those involving PI films modified by chemical etching. The cohesive failure inside the PI substrate of the Cu/graft-modified PI assemblies during delamination suggested that not only were the grafted polymer chains covalently tethered on the PI film, they were also incorporated into the metal matrix during the electroless plating process.  相似文献   

14.
In this paper, we present a study on the surface modification of polyethyleneterephthalate (PET) polymer by plasma treatment. The samples were treated by nitrogen and oxygen plasma for different time periods between 3 and 90 s. The plasma was created by a radio frequency (RF) generator. The gas pressure was fixed at 75 Pa and the discharge power was set to 200 W. The samples were treated in the glow region, where the electrons temperature was about 4 eV, the positive ions density was about 2 × 1015 m?3, and the neutral atom density was about 4 × 1021 m?3 for oxygen and 1 × 1021 m?3 for nitrogen. The changes in surface morphology were observed by using atomic force microscopy (AFM). Surface wettability was determined by water contact angle measurements while the chemical composition of the surface was analyzed using XPS. The stability of functional groups on the polymer surface treated with plasma was monitored by XPS and wettability measurements in different time intervals. The oxygen‐plasma‐treated samples showed much more pronounced changes in the surface topography compared to those treated by nitrogen plasma. The contact angle of a water drop decreased from 75° for the untreated sample to 20° for oxygen and 25° for nitrogen‐plasma‐treated samples for 3 s. It kept decreasing with treatment time for both plasmas and reached about 10° for nitrogen plasma after 1 min of plasma treatment. For oxygen plasma, however, the contact angle kept decreasing even after a minute of plasma treatment and eventually fell below a few degrees. We found that the water contact angle increased linearly with the O/C ratio or N/C ratio in the case of oxygen or nitrogen plasma, respectively. Ageing effects of the plasma‐treated surface were more pronounced in the first 3 days; however, the surface hydrophilicity was rather stable later. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
This report provides detailed experimental results of thermal and surface characterization on untreated and surface‐treated halloysite nanotubes (HNTs) obtained from two geographic areas. Surface characterization techniques, including XPS and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) were used. ToF‐SIMS surface analysis experiments were performed with both atomic and cluster ion beams. Higher ion yields and more high‐mass ions were obtained with the cluster ion beams. Static ToF‐SIMS spectra were analyzed with principal component analysis (PCA). Morphological diversities were observed in the samples although they mainly contained tubular structures. Thermogravimetric data indicated that aqueous hydrogen peroxide solution could remove inorganic salt impurities, such as alkali metal salts. The amount of grafting of benzalkonium chloride of HNT surface was determined by thermogravimetic analysis. PCA of ToF‐SIMS spectra could distinguish the samples mined from different geographical locations as well as among surface‐treated and untreated samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Thermo-sensitive poly-N-isopropylacrylamide (poly-NIPAAm) was grafted onto lyocell fibres using cerium ammonium nitrate (CAN) as initiator. The effects of initiation time, initiator concentration, monomer concentration and grafting time on the degree of grafting were investigated. A 15-60 min exposure time, 7.5 mM CAN solution concentration and a 0.5-1 mM NIPAAm monomer concentration were optimal for obtaining a maximum degree of grafting (60-70% at 24 h grafting time) of poly-NIPAAm on lyocell fibres. Higher degree of grafting was obtained increasing the grafting time, such as 120% at 72 h.The properties of the obtained poly-NIPAAm/lyocell copolymer were also investigated. Specifically, the effects of temperature and degree of grafting of poly-NIPAAm on the swelling behaviour of the copolymer were experimentally determined. Moreover, structural characterization, thermal behaviour and morphology of the poly-NIPAAm/lyocell copolymers were examined by Fourier Transform Infrared Spectroscopy (FTIR), Differencial Scanning Calorimetry (DSC) and Scanning electron microscopy (SEM) techniques, respectively.  相似文献   

17.
Microfluidic channels prepared from polydimethylsiloxane (PDMS) have been modified by UV-mediated graft polymerization of temperature-responsive polymers (poly[N-isopropyl acrylamide] or pNIPAAm), temperature- and pH-responsive copolymers (P[NIPAAm-co-acrylic acid (AAc)]), and a non-fouling hydrogel (polyethyleneglycol diacrylate, or PEGDA). This was done by presorbing a photosensitizer (PS) within the PDMS channel surface regions, contacting the different monomer solutions with the PS-containing surface under nitrogen, and irradiating with UV. The pNIPAAm-grafted surface was hydrophilic below its lower critical solution temperature (LCST), resisting non-specific adsorption, while it was hydrophobic above its LCST, now binding pNIPAAm-coated nanoparticles. Combined temperature- and pH-responsive surfaces were also prepared by UV radiation grafting a monomer mixture of pNIPAAm with AAc. The surfaces have been characterized by advancing water contact angle measurements. These smart microfluidic channels should be useful for many applications such as affinity separations and diagnostic assays.  相似文献   

18.
The current paper reports the synthesis of a highly hydrophilic, antifouling dendronized poly(3,4,5-tris(2-(2-(2-hydroxylethoxy)ethoxy)ethoxy)benzyl methacrylate) (PolyPEG) brush using surface initiated atom transfer radical polymerization (SI-ATRP) on PDMS substrates. The PDMS substrates were first oxidized in H2SO4/H2O2 solution to transform the Si-CH3 groups on their surfaces into Si-OH groups. Subsequently, a surface initiator for ATRP was immobilized onto the PDMS surface, and PolyPEG was finally grafted onto the PDMS surface via copper-mediated ATRP. Various characterization techniques, including contact angle measurements, attenuated total reflection infrared spectroscopy, and X-ray photoelectron spectroscopy, were used to ascertain the successful grafting of the PolyPEG brush onto the PDMS surface. Furthermore, the wettability and stability of the PDMS-PolyPEG surface were examined by contact angle measurements. Anti-adhesion properties were investigated via protein adsorption, as well as bacterial and cell adhesion studies. The results suggest that the PDMS-PolyPEG surface exhibited durable wettability and stability, as well as significantly anti-adhesion properties, compared with native PDMS surfaces. Additionally, our results present possible uses for the PDMS-PolyPEG surface as adhesion barriers and anti-fouling or functional surfaces in biomedical applications.  相似文献   

19.
The surface modifications of ethylene‐co‐tetrafluoroethylene (ETFE) surfaces by six plasmas (direct H2, Ar, and O2 plasmas and remote H2, Ar, and O2 plasmas) were investigated with two questions in mind: (1) what plasma could effectively modify ETFE surfaces and (2) which of the CF2? CF2 and CH2? CH2 components in ETFE was selectively modified? The plasma exposure led to a weight loss from the ETFE surfaces and changes in the chemical composition on ETFE surfaces. The weight‐loss rate showed a strong dependence on what plasma was used for the modification. The remote H2 plasma led to the lowest rate of weight loss in the six plasma exposures, and the direct O2 plasma led to the highest rate of weight loss. During exposure to the plasmas, defluorination occurred, and two new C1s components [? CH2? CHF? CH2? and ? CH2? CH(O? R)? CFx? , and ? CH2? CHF? CF2? , ? CH2? C(O)? CFx? , and ? CFx? C(O)? O? ] were formed on the modified ETFE surfaces. Defluorination was strongly influenced by what plasma was used for the modification. The remote H2 and Ar plasmas showed high defluorinations of 55 and 51%, respectively. The remote O2 plasma showed a low defluorination of only 25%. Conclusively, the remote H2 and Ar plasma exposure effectively modified ETFE surfaces. With the exposure of these surfaces to the remote H2 plasma, the CF2? CF2 component was predominantly modified, rather than the CH2? CH2 component. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2871–2882, 2002  相似文献   

20.
This paper utilizes a silver electrode quartz crystal microbalance (QCM) mass sensor to detect the physiology of cells. This study also investigates the plasma surface modification of silver electrode QCMs through deposition of hexamethyldisilazane (HMDSZ) films as a protection film. To improve the cell growth, this paper also performs post-treatments by surface-grafting acrylic acid (AAc), acrylamide (AAm), and oxygen plasma treatment onto the QCM electrodes. Experimental results indicate that plasma deposition is a useful technique to protect the surface of silver electrodes. This technique extends the unpeeling time of silver electrodes from 1 to 7 days. The hydrophilic silver electrode QCM surface modified by AAm exhibited a better storage time effect than other post-treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号