首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report six nucleation rate isotherms of vapor-liquid nucleation of Lennard-Jones argon from molecular dynamics simulations. The isotherms span three orders of magnitude in nucleation rates, 10(23)相似文献   

2.
Thermal conductivity of solid argon from molecular dynamics simulations   总被引:2,自引:0,他引:2  
The thermal conductivity of solid argon in the classical limit has been calculated by equilibrium molecular dynamic simulations using the Green-Kubo formalism and a Lennard-Jones interatomic potential. Contrary to previous theoretical reports, we find that the computed thermal conductivities are in good agreement with experimental data. The computed values are also in agreement with the high-temperature limit of the three-phonon scattering contribution to the thermal conductivity. We find that finite-size effects are negligible and that phonon lifetimes have two characteristic time scales, so that agreement with kinetic theory is obtained only after appropriate averaging of the calculated phonon lifetimes.  相似文献   

3.
A new approach is developed to study the dynamics of the localized process in solutions and other condensed phase systems. The approach employs a fluctuating elastic boundary (FEB) model which encloses the simulated system in an elastic bag that mimics the effects of the bulk solvent. This alleviates the need for periodic boundary conditions and allows for a reduction in the number of solvent molecules that need to be included in the simulation. The boundary bag is modeled as a mesh of quasi-particles connected by elastic bonds. The FEB model allows for volume and density fluctuations characteristic of the bulk system, and the shape of the boundary fluctuates during the course of the simulation to adapt to the configuration fluctuations of the explicit solute-solvent system inside. The method is applied to the simulation of a Lennard-Jones model of liquid argon. Various structural and dynamical quantities are computed and compared with those obtained from conventional periodic boundary simulations. The agreement between the two is excellent in most cases, thus validating the viability of the FEB method.  相似文献   

4.
In this paper we discuss a simple extrapolation scheme based on the asymptotic behavior of the electronic energies considered as functions of cutoff factor for orbital energies corresponding to virtual orbitals. The performance of this approach is illustrated in the context of large-scale dynamic simulations for excitation energies of the cytosine molecule in its native DNA environment. We demonstrate that the extrapolation errors are significantly smaller than the excitation-energy fluctuations, due to the fluctuating environment.  相似文献   

5.
Electronic absorption spectra of 2,7,12,17-tetra-tert-butylporphycene (TTPC) have been recorded in low-temperature argon and xenon matrices for various deposition conditions. In the region of the S(0)-S(1) electronic transition, the spectra of TTPC in argon reveal a rich site structure, characterized by a series of more than 30 absorption peaks. Studies of the temperature dependence of the electronic spectra in solid argon demonstrated remarkable spectral changes, resulting in the broadening of all bands with increasing temperature. These temperature-induced spectral changes are, to a large degree, reversible, so lowering of temperature is accompanied by the recovery of the original fine-line spectrum. The absorption spectra in xenon reveal broad bands, on which a rich pattern of lines becomes superimposed at low temperatures. Trapping site distribution and the structure of the microenvironment around the TTPC chromophore, embedded in argon and xenon hosts, have been analyzed using molecular dynamics (MD) simulations. The MD results show that the trapping of TTPC in rare-gas solids is influenced by favorable embedding of the bulky tert-butyl groups inside the matrix cage. The crucial role of the tert-butyl groups for the thermodynamics and kinetics of matrix deposition is demonstrated by comparing the results with those obtained for the parent, unsubstituted porphycene.  相似文献   

6.
We describe a set of algorithms that allow to simulate dihydrofolate reductase (DHFR, a common benchmark) with the AMBER all‐atom force field at 160 nanoseconds/day on a single Intel Core i7 5960X CPU (no graphics processing unit (GPU), 23,786 atoms, particle mesh Ewald (PME), 8.0 Å cutoff, correct atom masses, reproducible trajectory, CPU with 3.6 GHz, no turbo boost, 8 AVX registers). The new features include a mixed multiple time‐step algorithm (reaching 5 fs), a tuned version of LINCS to constrain bond angles, the fusion of pair list creation and force calculation, pressure coupling with a “densostat,” and exploitation of new CPU instruction sets like AVX2. The impact of Intel's new transactional memory, atomic instructions, and sloppy pair lists is also analyzed. The algorithms map well to GPUs and can automatically handle most Protein Data Bank (PDB) files including ligands. An implementation is available as part of the YASARA molecular modeling and simulation program from www.YASARA.org . © 2015 The Authors Journal of Computational Chemistry Published by Wiley Periodicals, Inc.  相似文献   

7.
Quantum-classical and quantum-stochastic molecular dynamics models (QCMD/QSMD) are formulated and applied to describe proton transfer processes in three model systems - the proton bound ammonia-ammonia dimer in an external electrostatic field; malonaldehyde, which undergoes a quantum tautomeric rearrangement; and phospholipase A2, an enzyme which induces a water dissociation process in its active site followed by proton hopping to a histidine imidazole ring. The proton dynamics are described by the time-dependent Schrödinger equation. The dynamics of the classical atoms are described using classical molecular dynamics. Coupling between the quantum proton (s) and the classical atoms is accomplished via conventional or extended Hellmann-Feynman forces, as well as the time-dependence of the potential energy function in the Schrödinger equation. The interaction of the system with its environment is described by stochastic forces. Possible extensions of the models as well as future applications in molecular structure and dynamics analysis will be briefly discussed.  相似文献   

8.
Massively parallel divide-and-conquer density functional tight-binding (DC-DFTB) molecular dynamics and metadynamics simulations are efficient approaches for describing various chemical reactions and dynamic processes of large complex systems via quantum mechanics. In this study, DC-DFTB simulations were combined with multi-replica techniques. Specifically, multiple walkers metadynamics, replica exchange molecular dynamics, and parallel tempering metadynamics methods were implemented hierarchically into the in-house Dcdftbmd program. Test simulations in an aqueous phase of the internal rotation of formamide and conformational changes of dialanine showed that the newly developed extensions increase the sampling efficiency and the exploration capabilities in DC-DFTB configuration space.  相似文献   

9.
A limiting factor in biological science is the time-scale gap between experimental and computational trajectories. At this point, all-atom explicit solvent molecular dynamics (MD) are clearly too expensive to explore long-range protein motions and extract accurate thermodynamics of proteins in isolated or multimeric forms. To reach the appropriate time scale, we must then resort to coarse graining. Here we couple the coarse-grained OPEP model, which has already been used with activated methods, to MD simulations. Two test cases are studied: the stability of three proteins around their experimental structures and the aggregation mechanisms of the Alzheimer's Abeta16-22 peptides. We find that coarse-grained isolated proteins are stable at room temperature within 50 ns time scale. Based on two 220 ns trajectories starting from disordered chains, we find that four Abeta16-22 peptides can form a three-stranded beta sheet. We also demonstrate that the reptation move of one chain over the others, first observed using the activation-relaxation technique, is a kinetically important mechanism during aggregation. These results show that MD-OPEP is a particularly appropriate tool to study qualitatively the dynamics of long biological processes and the thermodynamics of molecular assemblies.  相似文献   

10.
We present new generalized-ensemble molecular dynamics simulation algorithms, which we refer to as the multibaric-multithermal molecular dynamics. We describe three algorithms based on (1) the Nosé thermostat and the Andersen barostat, (2) the Nosé-Poincaré thermostat and the Andersen barostat, and (3) the Gaussian thermostat and the Andersen barostat. The multibaric-multithermal simulations perform random walks widely both in the potential-energy space and in the volume space. Therefore, one can calculate isobaric-isothermal ensemble averages in wide ranges of temperature and pressure from only one simulation run. We test the effectiveness of the multibaric-multithermal algorithm by applying it to a Lennard-Jones 12-6 potential system.  相似文献   

11.
We present a density functional for first-principles molecular dynamics simulations that includes the electrostatic effects of a continuous dielectric medium. It allows for numerical simulations of molecules in solution in a model polar solvent. We propose a smooth dielectric model function to model solvation into water and demonstrate its good numerical properties for total energy calculations and constant energy molecular dynamics.  相似文献   

12.
Molecular dynamics simulations were used to characterize the binding of the chiral drugs chlorthalidone and lorazepam to the molecular micelle poly-(sodium undecyl-(L)-leucine-valine). The project’s goal was to characterize the nature of chiral recognition in capillary electrophoresis separations that use molecular micelles as the chiral selector. The shapes and charge distributions of the chiral molecules investigated, their orientations within the molecular micelle chiral binding pockets, and the formation of stereoselective intermolecular hydrogen bonds with the molecular micelle were all found to play key roles in determining where and how lorazepam and chlorthalidone enantiomers interacted with the molecular micelle.  相似文献   

13.
Density functional molecular dynamics simulations have been performed in the NVT ensemble (moles (N), volume (V) and temperature (T)) on a system formed by ten acetone molecules at a temperature of 2000 K and density ρ = 1.322 g cm(-3). These conditions resemble closely those realized at the interface of an acetone vapor bubble in the early stages of supercompression experiments and result in an average pressure of 5 GPa. Two relevant reactive events occur during the simulation: the condensation of two acetone molecules to give hexane-2,5-dione and dihydrogen and the isomerization to the enolic propen-2-ol form. The mechanisms of these events are discussed in detail.  相似文献   

14.
A coarse-grained molecular dynamics (MD) model is developed to study the multivalent, or multisite, binding of small functionalized dendrimer molecules to beta-cyclodextrin-terminated self-assembled monolayers, the so-called "molecular printboards" used to print "ink" molecules on surfaces with a high degree of positional control and specificity. Some current and future bionanotechnology applications are in the creation of nanoparticle assemblies, directed protein assembly, platforms for biosensing, and cell:surface attachment. The coarse-grained model allows us to probe up to microsecond timescales and model ink diffusion, crucial for the application of the printboard in, for example, medical diagnostics. Recent all-atom MD simulations identified and quantified the molecular strain limiting the stability of nanopatterns created with small dendrimer inks, and explained the different patterns obtained experimentally with different dendrimer inks. In the present work, the all-atom simulations are "scaled up" to longer timescales via coarse graining, without incurring significant additional computational expense, and, crucially, without significant loss in atom-scale detail, the coarse-grained MD simulations yielding properties similar to those obtained from the all-atom simulations. The anchoring of the ink molecules to the monolayer is of multivalent nature and the degree of multivalency shows a sharp dependence on temperature, control of temperature thus providing a further operational "switch" for directed molecular assembly. The computational protocol developed can, in principle, be extended to model any multivalent assembly, for example, virus-cell complexation.  相似文献   

15.
A new algorithm for density-functional-theory-based ab initio molecular dynamics simulations is presented. The Kohn–Sham orbitals are expanded in Gaussian-type functions and an augmented-plane-wave-type approach is used to represent the electronic density. This extends previous work of ours where the density was expanded only in plane waves. We describe the total density in a smooth extended part which we represent in plane waves as in our previous work and parts localised close to the nuclei which are expanded in Gaussians. Using this representation of the charge we show how the localised and extended part can be treated separately, achieving a computational cost for the calculation of the Kohn–Sham matrix that scales with the system size N as O(NlogN). Furthermore, we are able to reduce drastically the size of the plane-wave basis. In addition, we introduce a multiple-cutoff method that improves considerably the performance of this approach. Finally, we demonstrate with a series of numerical examples the accuracy and efficiency of the new algorithm, both for electronic structure calculations and for ab initio molecular dynamics simulations. Received: 15 December 1998 /Accepted: 18 February 1999 /Published online: 14 July 1999  相似文献   

16.
Lipid bilayer membranes are known to form various structures such as large sheets or vesicles. When the two leaflets of the bilayer have an equal composition, the membrane preferentially forms a flat sheet or a spherical vesicle. However, a difference in the composition of the two leaflets may result in a curved bilayer or in a wide variety of vesicle shapes. Vesicles with different shapes have already been shown in experiments and diverse vesicle shapes have been predicted theoretically from energy minimization of continuous curves. Here we present a molecular dynamics study of the effect of small changes in the phospholipid headgroups on the spontaneous curvature of the bilayer and on the resulting vesicle shape transformations. Small asymmetries in the bilayers already result in high spontaneous curvature and large vesicle deformations. Vesicle shapes that are formed include ellipsoids, discoids, pear-shaped vesicles, cup-shaped vesicles, as well as budded vesicles. Comparison of these vesicles with theoretically derived vesicle shapes shows both resemblances and differences.  相似文献   

17.
A method for carrying out molecular dynamics simulations in which the potential energy U of the molecular system is constrained at its initial value is developed and thoroughly tested. The constraint is not introduced within the framework of the Lagrange multipliers technique, rather it is fulfilled in a natural way by carrying out the simulations in terms of suitable sets of delocalized coordinates. Such coordinates are defined by an appropriate tuning of the Baker, Kessi, and Delley internal delocalized nonredundant coordinates technique [J. Chem. Phys. 105, 192 (1996)]. The proposed method requires multiple evaluations of energy and gradients in each step of the molecular dynamics simulation, so that constant U simulations suffer some overhead compared to ordinary simulations. But the particular formulation of the delocalized coordinates and of the equations of motion greatly simplifies all the various steps required by the Baker's technique, thus allowing for the efficient implementation of the method itself. The technique is reliable and allows for very high accuracy in the potential energy conservation during the whole simulation. Moreover, it proved to be free of drift troubles which can occur when standard constraint methods are straightforwardly implemented without the application of appropriate correcting techniques.  相似文献   

18.
While the determination of free-energy differences by MD simulation has become a standard procedure for which many techniques have been developed, total entropies and entropy differences are still hardly ever computed. An overview of techniques to determine entropy differences is given, and the accuracy and convergence behavior of five methods based on thermodynamic integration and perturbation techniques was evaluated using liquid water as a test system. Reasonably accurate entropy differences are obtained through thermodynamic integration in which many copies of a solute are desolvated. When only one solute molecule is involved, only two methods seem to yield useful results, the calculation of solute-solvent entropy through thermodynamic integration, and the calculation of solvation entropy through the temperature derivative of the corresponding free-energy difference. One-step perturbation methods seem unsuitable to obtain entropy estimates.  相似文献   

19.
In order to probe the fundamental principles that govern protein evolution, we use a minimalist model of proteins to provide a mapping from genotype to phenotype. The model is based on physically realistic forces of protein folding and includes an explicit definition of protein function. Thus, we can find the fitness of a sequence from its ability to fold to a stable structure and perform a function. We study the fitness landscapes of these functional model proteins, that is, the set of all sequences mapped on to their corresponding fitnesses and connected to their one mutant neighbors. Through population dynamics simulations we directly study the influence of the nature of the fitness landscape on evolution. Populations are observed to move to a steady state, the distribution of which can often be predicted prior to the population dynamics simulations from the nature of the fitness landscape and a quantity analogous to a partition function. In this paper, we develop a scheme for predicting the steady-state population on a fitness landscape, based on the nature of the fitness landscape, thereby obviating the need for explicit population dynamics simulations and providing some insight into the impact on molecular evolution of the nature of fitness landscapes. Poor predictions are indicative of fitness landscapes that consist of a series of weakly connected sublandscapes.  相似文献   

20.
Folding of four fast‐folding proteins, including chignolin, Trp‐cage, villin headpiece and WW domain, was simulated via accelerated molecular dynamics (aMD). In comparison with hundred‐of‐microsecond timescale conventional molecular dynamics (cMD) simulations performed on the Anton supercomputer, aMD captured complete folding of the four proteins in significantly shorter simulation time. The folded protein conformations were found within 0.2–2.1 Å of the native NMR or X‐ray crystal structures. Free energy profiles calculated through improved reweighting of the aMD simulations using cumulant expansion to the second‐order are in good agreement with those obtained from cMD simulations. This allows us to identify distinct conformational states (e.g., unfolded and intermediate) other than the native structure and the protein folding energy barriers. Detailed analysis of protein secondary structures and local key residue interactions provided important insights into the protein folding pathways. Furthermore, the selections of force fields and aMD simulation parameters are discussed in detail. Our work shows usefulness and accuracy of aMD in studying protein folding, providing basic references in using aMD in future protein‐folding studies. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号