首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Formation of Organosilicon Compounds. 110. Reactions of (Cl3Si)2CCl2 and its Si-methylated Derivatives as well as of (Cl3Si)2CHCl, (Cl3Si)2C(Cl)Me and Me2CCl2 with Silicon (Cu cat.) The reactions of (Cl3Si)2CCl2 1 , its Si-methylated derivatives (Me3Si)2CCl2 8 , Me3Si? CCl2? SiMe2Cl 9 , (ClMe2Si)2CCl2 10 , Me3Si? CCl2? SiMeCl2 11 , Cl2MeSi? CCl2? SiCl3 12 as well as of (Cl3Si)2CHCl 38 , (Cl3Si)2CClMe 39 and of Me2CCl2 with Si (Cu cat.) in a fluid bed reactor ( 38 and 39 also in a stirred solid bedreactor) arc presented. While (Cl3Si)2CCl2 1 yields C(SiCl3)4 2 the 1,1,3,3-tetrachloro-2,2,4,4-tetrakis(trichlorsilyl)-1,3-disilacyclobutane Si6C2Cl16 3 and the related C-spiro linked disilacyclobutanes Si8C3Cl20 4 , Si10C4Cl24 5 , Si12C5Cl28 6 , Si14C6Cl32 7 this type of compounds is not obtained starting from the Si-methylated derivatives 8, 9, 10, 11 They Produce a number of variously Si-chlorinated and -methylated tetrasila- and trisilamethanes. However, Cl2MeSi? CCl2? SiCl3 12 forms besides of Si-chlorinated trisilamethanes also the disilacyclobutanes Si6C2Cl15Me 34 and cis- and trans Si6C2Cl14Me2 35 as well as the spiro-linked disilacyclobutanes Si8C3Cl19Me 36 , Si8C3Cl18Me2 37 . (Cl3Si)2CHCl 38 mainly yields HC(SiCl3)3 31 and also the disilacyclobutanes cis- and trans-(Cl3Si)HC(SiCl2)2CH(SiCl3) 41 and (Cl3Si)2C(SiCl2)2CH(SiCl3) 45 the 1,3,5-trisilacyclohexane [Cl3Si(H)C? SiCl2]3 44 as well as [(Cl3Si)2CH]2SiCl2, and (Cl3Si)2CClMe 39 mainly yields (Cl3Si)2C?CH2and (Cl3Si)2besides of HC(SiCl3)3, MeC(SiCl3)3and (Cl3Si)3C? SiCl2Me.,. Me2CCl2 59 mainly yields Me(Cl)C?CH2, Me2CHCl and HCl2Si? CMe2? SiCl3, besides of Me2C(SiCl3)2 and Me2C(SiCl2H)2 Compound 3 crystallizes triclinically in the space group P1 (Nr. 2) mit a = 900,3, b = 914,0, c = 855,3 pm, α = 116,45°, β = 101,44°, γ = 95,86° and one molecule per unit cell. Compound 4 crystallizes monoclinically in thc space group C2/c (no. 15) with a = 3158.3,b = I 103.7, c = 2037.4 pm, β = 1 16.62° and 8 molecules pcr unit cell. The disilacyclobutane ring of compound 3 is plane, showing a mean distance of d (Si-C) =19 1.8 pm and the usual deformations of endocyclic angles: αSi = 94,2°> 85,8° = αC.The spiro-linked disilacyclobutane rings of compound 4 are slightly folded by a mean angle of (19.0°). Their mean distances were found to be d (Si? C) = 190.4 pm relating to the central carbon atom and 192.0 pm to the outer ones, respectively. The deformations of endocyclic angles: αSi = 93,9°> 84,4° = αC are comparable to those of compound 3.  相似文献   

2.
Contributions to the Chemistry of Silicon Sulphur Compounds. XXXIII. Structure of Bis (triphenylsilyl)sulphide The condensation of triphenylsilanethiol yielded bis(triphenylsilyl)sulphide ( 1 ). The compound is remarkable resistent to hydrolysis. 1 crystallizes monoclinically [P21/n (No. 14): a = 1707.8 pm; b = 1454.6 pm; c = 1225.0 pm; β = 97.27°; Z = 4; 4470 h k l; R = 0.053]. The molecule is bent with a bond angle Si? S? Si = 112.0°. The mean bond distances Si? S and Si? C are 215.2 pm and 187.4 pm, respectively. Some structural details are discussed.  相似文献   

3.
Metal Derivatives of Molecular Compounds. VII. Bis[1,2-bis(dimethylamino)ethane-N,N′]lithium Disilylphosphanide — Synthesis and Structure Crystalline lithium phosphanides studied so far show a remarkably high diversity of structure types dependent on the ligands at lithium and the substituents at phosphorus. Bis[1,2-bis(dimethylamino)ethane-N,N′]lithium disilylphosphanide ( 1 ) discussed here, belongs to the up to now small group of compounds which are ionic in the solid state. It is best prepared from silylphosphane by twofold lithiation with lithium dimethylphosphanide first and subsequent monosilylation with silyl trifluoromethanesulfonate, followed by complexation. As found by X-ray structure determination (wR = 0.038) on crystals obtained from diethyl ether {monoclinic; space group P21/c; a = 897.8(1); b = 1 673.6(2); c = 1 466.8(1) pm; β = 90.73(1)° at ?100 ± 3°C; Z = 4 formula units}, the lithium cation is tetrahedrally coordinated by four nitrogen atoms of two 1,2-bis(dimethylamino)ethane molecules. Characteristic parameters of the disilylphosphanide anion are a shortened average P? Si bond length of 217 pm (standard value 225 pm) and a Si? P? Si angle of 92.3°.  相似文献   

4.
Synthesis, Characterization, and Structure of P7(t-Bu3Si)3 (?Tris(supersilyl)heptaphosphane(3)”? Tris(tri-tert-butylsilyl)heptaphosphanortricyclane P7(t-Bu3Si)3 1 is obtained from the reaction of (t-Bu)3Si? Si(t-Bu)3 with white phosphorus and forms colorless to pale yellow thermostable crystals. 1 is identified by the complete analysis of its 31P{1H} NMR spectrum (A[MX]3 spin system) as well as by a single crystal structure determination (space group Pca21, a = 170.76(2)pm, b = 131.14(3)pm, c = 426.61(5)pm, α = β = γ= 90°, Z = 8 formula units in the elementary cell). The steric demand of the (t-Bu)3Si-Groups causes an increase of the exocyclic bond angles at the equatorial phosphorus atoms Pe, while it does not particularly influence the P7-skeleton. Chlorine (r.t.) and bromine (70°C) degrade the P7-cage of 1 with formation of PX3 and (t-Bu)3SiX (X = Cl, Br).  相似文献   

5.
Formation of Organosilicon Compounds. 94. Crystal Structure of Hexaphenyltrisilacyclohexane Si3C39H36 1.1.3.3.5.5-Hexaphenyl-1.3.5-trisilacyclohexane crystallizes monoclinically in the space group P21/n (No. 14) with a = 1718.3 pm, b = 1769.2 pm, c = 1091.4 pm, β = 90.72° and Z = 4 molecules per unit cell. The trisilacyclohexane sceleton is present in a flattened twist boat conformation with mean bond angles of 110.0° at the Si atoms and 117.9° at the C atoms, respectively. The mean bond lengths are d(Si? C) = 187.1 pm in the six membered ring and 187.9 pm to the substituents.  相似文献   

6.
Polysulfonylamines. XCIV. Molecules with Unusually Long N(sp2)–Si(sp3) Bonds: Synthesis and Crystal Structures of 1,2-Benzenedisulfonylaminosilanes The following compounds were obtained by metathesis of silver 1,2-benzenedisulfonimide (AgZ) with the appropriate chlorosilanes: ZSiMe3 ( 4 ), ZSinPr3, ZSiMe2nBu, ZSiMe2(CMe2–CHMe2) ( 7 ), (Z)2SiMe2 ( 8 ). In the crystal structures of 4 (monoclinic, space group P21/n), 7 (monoclinic, P21/c) and 8 (monoclinic, P21/n), which were determined by low-temperature X-ray diffraction, the molecules adopt the N-silyl form and display unusually long bonds between the trigonal-planar N and the tetrahedrally coordinated Si atoms ( 4 : 182.6, 7 : 184.1, 8 : 177.8 and 180.5 pm). For 7 in CDCl3 solution, 1H and 13C NMR data indicate N,O-silylotropy. The solid state structures of molecules 4 and 7 strongly suggest that the N–Si bond lengthening in N,N-disulfonylated aminosilanes is mainly induced by the π-acceptor character of the SO2 groups and not by the occasionally observed coordination expansion of the Si atom through short intramolecular O…Si contacts.  相似文献   

7.
Structural Chemistry of Phosphorus Containing Chains and Rings. 7. Molecular and Crystal Structure of the Diphosphagermetane (t-BuP)2(GePh2)2 The compound 1,2-di-tert-butyl-3,3,4,4-tetraphenyl-diphospha-3,4-digerma-cyclobutan, (t-BuP)2(GePh2)2, crystallizes monoclinically in the space group P21/c with a = 996.8 pm, b = 1337.3 pm, c = 2403.4 pm, β = 92.66° and Z = 4 formula units. The main structural feature is a non-planar four-membered ring. The (average) bond lengths are d(Ge? Ge) = 242.1 pm, d(Ge? P) = 234.0 pm, d(P? P) = 221.6 pm, d(Ge? C) = 194.9 pm, d(P? C) = 188.tyl4 pm, d(C? C)Ph = 136.l5 pm, d(C? C)t-Bu = 151.8 pm, d(C? H)Ph = 91 pm, d(C? H)t-Bu ? 95 pm. The geometry of the substituents phenyl and tert-butyl is quite normal.  相似文献   

8.
Polysulfonyl Amines. LVII. Two Silver(I) Di(organosulfonyl)-amides with Silver-η2-Aryl or Silver-Silver Interactions: Crystal Structures of Silver Di(benzenesulfonyl)amide-Water (1/0.5) and of Anhydrous Silver Di(4-toluenesulfonyl)-amide Crystals of [(PhSO2)2NAg(μ-H2O)AgN(SO2Ph)2]n ( 5 ) and [(4-Me? C6H4SO2)2NAgAgN(SO2C6H4-4-Me)2]n ( 6 ) were obtained from aqueous solutions. The crystallographic data are for 5 (at ?95°C): monoclinic, space group C2/c, a = 2 743.8(5), b = 600.49(12), c = 1 664.5(3) pm, β = 101.143(15)°, V = 2.6908 nm3, Z = 8, Dx = 2.040 Mg m?3; for 6 (at ?130°C): monoclinic, space group P21/n, a = 1 099.8(5), b = 563.7(3), c = 2 487.7(13) pm, β = 99.68(4)°, V = 1.5203 nm3, Z = 4, Dx = 1.888 Mg m?3. In both crystals, the silver atom has a fivefold coordination. The structure of 5 displays [(RSO2)2N? Ag(μ-H2O)Ag′? N(SO2R)2] units with Ag? N 226.9 pm, Ag? O 236.7 pm and Ag? O? Ag′ 95.3°; the water oxygen lies on a crystallographic twofold axis. These units are extended to two fused six-membered rings by intramolecular dative bonds (S)O → Ag′ and S(O)′ → Ag (249.3 pm). One phenyl group from each (PhSO2)2N moiety is η2-coordinated with its p-C and one m-C atom to a silver atom of a neighbouring bicyclic unit related by a glide plane to form infinite parallel strands (p-C? Ag 252.2, m-C? Ag 263.9 pm). The strands are interconnected into parallel layers through hydrogen bonds between H2O and sulfonyl oxygens [O …? O(S) 276.1 pm]. These layers consist of a hydrophilic inner region containing metal ions, N(SO2)2 fragments and water molecules, and hydrophobic surfaces formed by phenyl groups. The structure of 6 features centrosymmetric [(RSO2)2N? Ag? Ag′? N(SO2R)2] units with two intramolecular dative bonds (S)O → Ag′ and (S)O′ → Ag (Ag? Ag′ 295.4, Ag? N 226.0, Ag? O 229.4 pm). These bi-pentacyclic units are associated by translation parallel to y into infinite strands by two dative (S)O → Ag bonds per silver atom (Ag? O 243.2 and 253.3 pm).  相似文献   

9.
Transition Metal Complexes of P-rich Phosphanes and Silylphosphanes. VII. Formation and Structure of [Li(DME)3]2{(SiMe3)[Cr(CO)5]2 P-P ? P-P[Cr(CO)5]2(SiMe3)} Deep red crystals of the title compound 1 are produced in the reaction of LiP(Me3Si)2[Cr(CO)5] with 1, 2-dibromoethane in DME. The structure of 1 was derived from the investigation of the 31P-NMR spectra and confirmed by a single crystal structure determination. 1 crystallizes in the space group P1 (no. 2); a = 1307.8(5)pm, b = 1373.1(5)pm, c = 1236.1(4)pm, α = 106.22(4)°, β = 88.00(3)°, γ = 115.52(4)° and Z = 1. 1 forms a salt composed of a dianion R2R4′P42? (R ? SiMe3, R′ ? Cr(CO)5) and solvated Li+ cations. The zigzag shaped dianion possesses the symmetry 1 -Ci. The distances d(P? P) = 202.5(1)pm and d(P? P) = 221.9(1)pm correspond to a double bond and single bonds, respectively. The distances d(Cr? P) = 251.1(1) pm and 255.3(1) pm are larger than those observed so far which might be caused by the charge distribution in the dianion.  相似文献   

10.
Structural Chemistry of Phosphorus-containing Chains and Rings. 1. Crystal Structure of the Diphosphasilirane (t-BuP)2SiPh2 The three-membered P2Si-heterocycle 1, 2-di-tert-butyl-3, 3-diphenyl-1, 2, 3-diphosphasilirane (t-BuP)2SiPh2 crystallizes monoclinic in the space group P21 with a = 1041.2 pm, b = 882.3 pm, c = 1158.1 pm, β = 91.33° and Z = 2 formula units. A special structural feature is the regular triangle built up by two P and one Si. Therefore the endocyclic bond angle at Si is as low as 60°. The average bond lengths are P? P = 222.6 pm, P? Si = 222.5 pm, P? C = 190.8 pm, Si? C = 186.6 pm, (C? C )ph = 139.0 pm, ( C? C )t-Bu = 151.7 pm. The geometry of the substituents phenyl and tert-butyl is quite normal, the last ones are slightly disordered.  相似文献   

11.
[VCl3(NPPh3)(OPPh3)], a Phosphorane Iminato Complex of Vanadium(IV) The title compound has been prepared from vanadium tetrachloride and Me3SiNPPh3 in the presence of OPPh3 in CCl4 solution, forming orange-red, moisture sensitive crystals, which were characterized by an X-ray structure determination. Space group Cc, Z = 4, 2 560 observed unique reflections, R = 0.049. Lattice dimensions at 0°C: a = 1 018(1), b = 1 826(2), c = 1 859(2) pm, β = 93.65(9)° [VCl3(NPPh3)(OPPh3)] forms monomeric molecules, in which the vanadium atom is coordinated in a distorted square pyramidal fashion with the (NPPh3)? ligand in apical position. The three chlorine atoms and the oxygen atom of the OPPh3 molecule occupy the basal positions. The phosphorane iminato group V?N?PPh3 is nearly linear (bond angle VNP 161.4°), the bond lengths VN (169 pm) and PN (162 pm) correspond with double bonds.  相似文献   

12.
Formation of Organosilicon Compounds. 95. Crystal Structure of a Hexadecamethyloctasila-dispiro [5.1.5.1]tetradecane, Si8C22H56 1,1,3,3,5,5,7,7,9,9,11,11,13,13,14,14-Hexadecamethyl-1,3,5,7,9,11,13,14-octasila-dispiro[5.1.5.1]tetradecane crystallizes monoclinically in the space group P21/n (No. 14) with a = 1352.4 pm, b = 1215.5 pm, c = 1001.2 pm, β = 92.11° and Z = 2 molecules per unit cell. The dispiro system is formed by a central disilacyclobutane and two C-spiro connected trisilacyclohexane rings. The symmetry of the molecule is 2/m, with flattened six membered rings in chair conformation. The Si? C bonds are enlarged (192 pm) at the strained spiro region whereas the Si? C bonds are distinctly shortened (186 pm) at the opposite Si atoms in the six membered rings.  相似文献   

13.
Formation of Organosilicon Compounds. 103. Formation and Structure of cis and trans 2,4-Dichloro-2,4-bis(trimethylsilyl)-1,1,3,3-tetramethyl-1,3-disilacyclobutane The reaction of Me3Si? CCl2? SiMe2Cl with LiBu in THF yields 1,1,3,3-Tetramethyl-2,4-bis(trimethylsilyl) 1,3-disilabicyclo[1.1.0]butane. The product of the first reaction stage is Me3Si? CCl(Li)-SiMe2Cl. The 1,3-Disilacyclobutane 2 and 3 were isolated, when Me3Si? CCl2? SiMe2Cl was treated with LiBu in Et2O. This way the proof is given that 2 and 3 are intermediates of the formation of product 1 . The further products are 4 and 5 (CCl in 2 and 3 substituted by CH) and Me3Si? CH2? C(SiMeCl)2SiMe3. 2 crystallizes orthorhombically in the space group Fdd 2 (no. 43) with a = 2149.1 pm, b = 2229.2 pm, c = 1763.6 pm and Z = 16 molecules per cell. The central ring of disilacyclobutane is slightly folded (17.9°). The configuration of the C-Atoms in this four membered ring gets closer to a sp2 configuration built up by three Si? C bonds. The Cl-atoms approximately have orthogonal positions to these CSi3 arrangements. The extension of the C? Cl bonds (184.6 pm) and the mutual approximations of the Cl-atoms in the cis-position indicate a high reactivity of the molecule.  相似文献   

14.
The Crystal Structure of Tetrakis(di-tert.-butylphosphino)diphosphane [(tBu)2P]2P? P[P(tBu)2]2 [(tBu)2P]2P? P[P(tBu)2]2 1 obtained at ?20°C from a solution of (tBu)2P? P=P(Br)tBu2 forms yellow crystals (regular hexagons). 1 crystallizes monoclinic in the space group C2/c with a = 2145.6pm, b = 1137pm, c = 1696.1pm, β = 110.075° and Z = 4 formula units in the elementary cell. Due to high steric load the bond angles at the tertiary P atoms with δ = 115.7° are significantly larger than those at the primary P atoms with δ = 108.6°.  相似文献   

15.
Synthesis and Structure of Phosphinophosphinidene-phosphoranes tBu2P? P?P(Me)tBu2 1, tBu(Me3Si)P? P?P(Me)tBu2 2, and tBu2P? P?P(Br)tBu2 3 A new method for the synthesis of 1 and 2 (Formulae see ?Inhaltsübersicht”?) is reported based on the reaction of 5 with substitution reagents (Me2SO4 or CH3Cl). The results of the X-ray structure determination of 1 and 2 are given and compared with those of 3 . While in 3 one P? P distance corresponds to a double bond and the other P? P distance to a single bond (difference 12.5 pm) the differences of the P? P distances in 1 and 2 are much smaller: 5.28 pm in 1 , 4.68 pm in 2 . Both 1 and 2 crystallize monoclinic in the space group P21/n (Z = 4). 2 additionally contains two disordered molecules of the solvent pentane in the unit cell. Parameters of 1 : a = 884.32(8) pm, b = 1 924.67(25) pm, c = 1 277.07(13) pm, β = 100.816(8)°, and of 2 : a = 1 101.93(12) pm, b = 1 712.46(18) pm, c = 1 395.81(12) pm, β = 111.159(7)°, all data collected at 143 K. The skeleton of the three P atoms is bent (PPP angle 100.95° for 1 , 100.29° for 2 and 105.77° for 3 ). Ab initio SCF calculations are used to discuss the bonding situation in the molecular skeleton of the three P atoms of 1 and 3 . The results show a significant contribution of the ionic structure R2P? P(?)? P(+)(X)R2. The structure with (partially) charged P atoms is stabilized by bulky polarizable groups R (as tBu) as compared to the fully covalent structure R2P? P(X)? PR2.  相似文献   

16.
Formation of Organosilicon Compounds. 96. Preparation and Structure of P-Ylides of the 1,3,5-Trisilahexanes (Influence of the Substituents) The influence of the substituents at the silicon atoms on formation and structure of ylides of 1,3,5-trisilacyclohexanesis investigated. The reactions of 1 , 2 , 3 with Me3Si? PMe2 lead via cleavage of the Si? P bond and subsequent rearrangement to the ylides 4 , 5 and 6 . The x-ray structure determination reveals, that the atoms of the ylid part of 4 are in a plane with the shortened bond distances d(C? P) = 168.6 pm and d(Si? C) = 180.1 pm, whereas the other endocyclic Si? C distances remain nearly unaffected by the ylid formation. Only the endocyclic bond angles C? Si? C of the Si atoms of the ylid are enlarged (116°). In the molecule 6 d(C? P) = 164.6 pm is much shorter, but d(P? Br) = 236.6 pm is enlarged. This enlargement is coupled with a deviation of 17 pm for the ylidic C atom from the ylid plane. Distances and angles are normal in the methylated trisilnhexane. The ring in 6 has boat conformation, in 4 a flat chair conformation.  相似文献   

17.
Hydrido Silyl Complexes. V. Structural Changes in Hydrido Silyl Complexes Due to Si? H Interaction; Comparison between the Structures of (π-CH3C5H4)(CO)2Mn(H)SiR3 and Analogous (π-C5H5)(CO)2FeSiR3 Complexes The structures of the complexes Cp(CO)2FeSiFPh2 ( 2a ) and Cp(CO)2FeSiCl3 ( 2b ), containing ?normal”? metal-silicon bonds, are compared with the known structures of the complexes MeCp(CO)2Mn(H)SiFPh2 ( 1a ) and MeCp(CO)2Mn(H)SiCl3 ( 1b ), containing Mn? H? Si three-center bonds. 2a crystallizes in space group P21/c, a = 805.8(3), b = 1417.5(6), c = 1498.2(4) pm, β = 90.99(3)°, 2b in space group P21/n, a = 817(1), b = 1244(1), c = 1142(1)pm, β = 99.9(1)°. In 2a gauche conformation in respect to the Fe? Si bond is found; in 2b the silylligand is rotated 12° around the Fe? Si axis out of a staggered conformation. Possible reasons for the unsymmetrical conformations are discussed. Lengthening of the Fe? Si distance from 221.6(1)pm in 2b to 227.8(1) pm in 2a corresponds to the expected increase in the bond radius of silicon due to exchange of the substituents at silicon. Additional lengthening of the Mn? Si distance by about 3.5 pm in 1a compared with 1b is attributed to the increased delocalization of the Mn? H? Si bond in 1a .  相似文献   

18.
Chelate Complexes of Rhenium Tetrachloride. The Crystal Structures of ReCl4(DME) and ReCl4(DPPE) · Tolan Bright green crystals of ReCl4(DME) have been prepared by the reaction of rhenium pentachloride with dimethoxyethane (DME) in dichloromethane. ReCl4(DPPE) · tolan was obtained in form of red crystals by the reaction of the alkyne complex [ReCl4(Ph? C?C? Ph)(POCl3)] with bis(diphenylphosphino)ethane (DPPE) in dichloromethane. The complexes were characterized by X-ray structure determinations. ReCl4(DME): Space group I4 2d, Z = 8, 829 observed unique reflexions, R = 0.022. Lattice dimensions at 19.5°C: a = b = 960.60(6), c = 2337.2(6) pm. The complex forms monomeric molecules with DME as chelating ligand; the Re? O bond lengths are 213.1 pm. The chlorine atoms, arranged in trans position to the chelating ligand, have slightly shorter Re? Cl bonds than the chlorine atoms in cis position (232,1 pm). ReCl4(DPPE) · tolan: Space group P21/n, Z = 4,4313 observed unique reflexions, R = 0.040. Lattice dimensions at ?80°C: a = 1095.7(1), b = 1764.2(2), c = 1898.0(2) pm, β = 99.229(8)°. The compound consists in form of monomeric molecules [ReCl4(DPPE)] and diphenylacetylene molecules, which are incorporated in the lattice. The two phenyl rings of the tolan molecules are twisted towards each other along the C? C axis with a dihedral angle of 21°. The DPPE molecules are bonded to the rhenium atom in a chelating fashion with medium Re? P lengths of 250.4 pm. The chlorine atoms, arranged in trans position to this ligand, with Re? Cl bond lengths of 234.5 pm are slightly longer than the Re? Cl bonds in cis position with 232.3 pm.  相似文献   

19.
On the Structure of Sr3(BN2)2 The structure of Sr3(BN2)2 was determined on single-crystal X-ray data collected with a four-circle diffractometer. Sr3(BN2)2 crystallizes in the cubic space group Im3 m (no. 229) with a = 764.56(3) pm and Z = 3. The structure contains linear BN3?2 ions with a B? N bond length of 135.8(6) pm. The straight forward synthesis employing metal nitrides plus boron nitride yielded crystalline powders of M3(BN2)2 (M = Ca, Sr) at 1100°C (5 days). Cubic indexing of guinier patterns gave a = 765.8(1) pm for M = Sr and a = 734.7(2) pm for M = Ca. The structure refinement on a single crystal of Sr3(BN2)2 revealed that one strontium site (2a; 0, 0, 0) is occupied by only about 50%. It has been tried to fully occupy this site with an alkali metal (A) to obtain ASr4(BN2)3 (Z = 2). Reactions with A = Na yielded crystalline powders. Cubic indexing of the guinier pattern analogous to that of Sr3(BN2)2 gave a = 754.2(1) pm.  相似文献   

20.
Structure of Tetraphenyldisiloxane Tetraphenyldisiloxane 1 crystallizes at 298 K monoclinically (P21/n; a = 1407.6; b = 610.7; c = 1262.7 pm; β = 95.87° Z = 2) and undergoes a second order phase transition at 200 K, in an almost unchanged structure of triclinic symmetry. At 298 K the molecules are already bent (Si? O? Si = 160°) with static or dynamical disorder of the bridging atom. Both Si? O distances are different (156 or 169 pm), because the shift of the bridging O atom is not perpendicular to the Si? to? Si vector. The reason for this remarkable behavior is not yet clear. According to the vibrational spectra, the Si? O? Si bridge is bent in the crystal but, in CCl4 solution a dynamical oscillation through the linear configuration may occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号