首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In a graph G, a set X is called a stable set if any two vertices of X are nonadjacent. A set X is called a dominating set if every vertex of V – X is joined to at least one vertex of X. A set X is called an irredundant set if every vertex of X, not isolated in X, has at least one proper neighbor, that is a vertex of V – X joined to it but to no other vertex of X. Let α′ and α, γ, and Γ, ir and IR, denote respectively the minimum and maximum cardinalities of a maximal stable set, a minimal dominating set, and a maximal irredundant set. It is known that ir ? γ ? α′ ? α ? Γ ? IR and that if G does not contain any induced subgraph isomorphic to K1,3, then γ = α′. Here we prove that if G contains no induced subgraph isomorphic to K1,3 or to the graph H of figure 1, then ir = γ = α′. We prove also that if G contains no induced subgraph isomorphic to K1,3, to H, or to the graph h of figure 3, then Γ = IR. Finally, we improve a result of Bollobas and Cockayne about sufficient conditions for γ = ir in terms of forbidden subgraphs.  相似文献   

2.
We ask, When does a graph G have a subgraph Γ such that the vertices of odd degree in Γ form a specified set S ? V(G), such that G - E(Γ) is connected? If such a subgraph can be found for a suitable choice of S, then this can be applied to problems such as finding a spanning eulerian subgraph of G. We provide a general method, with applications.  相似文献   

3.
For 2≤r∈?, let Sr denote the class of graphs consisting of subdivisions of the wheel graph with r spokes in which the spoke edges are left undivided. Let ex(n, Sr) denote the maximum number of edges of a graph containing no Sr‐subgraph, and let Ex(n, Sr) denote the set of all n‐vertex graphs containing no Sr‐subgraph that are of size ex(n, Sr). In this paper, a conjecture is put forth stating that for r≥3 and n≥2r + 1, ex(n, Sr) = (r ? 1)n ? ?(r ? 1)(r ? 3/2)? and for r≥4, Ex(n, Sr) consists of a single graph which is the graph obtained from Kr ? 1, n ? r + 1 by adding a maximum matching to the color class of cardinality r ? 1. A previous result of C. Thomassen [A minimal condition implying a special K4‐subdivision, Archiv Math 25 (1974), 210–215] implies that this conjecture is true for r = 3. In this paper it is shown to hold for r = 4. © 2011 Wiley Periodicals, Inc. J Graph Theory 68:326‐339, 2011  相似文献   

4.
A retract of a graph Γ is an induced subgraph Ψ of Γ such that there exists a homomorphism from Γ to Ψ whose restriction to Ψ is the identity map. A graph is a core if it has no nontrivial retracts. In general, the minimal retracts of a graph are cores and are unique up to isomorphism; they are called the core of the graph. A graph Γ is G‐symmetric if G is a subgroup of the automorphism group of Γ that is transitive on the vertex set and also transitive on the set of ordered pairs of adjacent vertices. If in addition the vertex set of Γ admits a nontrivial partition that is preserved by G, then Γ is an imprimitive G‐symmetric graph. In this paper cores of imprimitive symmetric graphs Γ of order a product of two distinct primes are studied. In many cases the core of Γ is determined completely. In other cases it is proved that either Γ is a core or its core is isomorphic to one of two graphs, and conditions on when each of these possibilities occurs is given.  相似文献   

5.
A graph L is called a link graph if there is a graph G such that for each vertex of G its neighbors induce a subgraph isomorphic to L. Such a G is said to have constant link L. We prove that for any finite group Γ and any disconnected link graph L with at least three vertices there are infinitely many connected graphs G with constant link L and AutG ? Γ. We look at the analogous problem for connected link graphs, namely, link graphs that are paths or have disconnected complements. Furthermore we prove that for n, r ≥ 2, but not n = 2 = r, any finite group can be represented by infinitely many connected r-uniform, n-regular hypergraphs of arbitrarily large girth.  相似文献   

6.
In a Kr‐free graph, the neighborhood of every vertex induces a Kr ? 1‐free subgraph. The Kr‐free graphs with the converse property that every induced Kr ? 1‐free subgraph is contained in the neighborhood of a vertex are characterized, based on the characterization in the case r ? 3 due to Pach [ 8 ]. © 2004 Wiley Periodicals, Inc. J Graph Theory 47: 29–38, 2004  相似文献   

7.
Let P be a class of graphs; a graph Γ with vertex set V is locally P-homogeneous if whenever U ? V and the vertex subgraph (U) lies in P, then each automorphism of (U) extends to an automorphism of Γ. Let C be the class of connected graphs, Q the class of cones, R the class of “rakes”; we classify locally finite, locally C-homogeneous graphs, and prove that a locally finite, locally (Q ? R)-homogeneous graph is either locally C-homogeneous, or is the Levi graph of the sevenpoint projective plane.  相似文献   

8.
In this article, we prove that a line graph with minimum degree δ≥7 has a spanning subgraph in which every component is a clique of order at least three. This implies that if G is a line graph with δ≥7, then for any independent set S there is a 2‐factor of G such that each cycle contains at most one vertex of S. This supports the conjecture that δ≥5 is sufficient to imply the existence of such a 2‐factor in the larger class of claw‐free graphs. It is also shown that if G is a claw‐free graph of order n and independence number α with δ≥2n/α?2 and n≥3α3/2, then for any maximum independent set S, G has a 2‐factor with α cycles such that each cycle contains one vertex of S. This is in support of a conjecture that δ≥n/α≥5 is sufficient to imply the existence of a 2‐factor with α cycles, each containing one vertex of a maximum independent set. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 251–263, 2012  相似文献   

9.
A graph L is called a link graph if there is a graph G such that for each vertex of G its neighbors induce a subgraph isomorphic to L. Such a G is said to have constant link .L Sabidussi proved that for any finite group F and any n ? 3 there are infinitely many n-regular connected graphs G with AutG ? Γ. We will prove a stronger result: For any finite group Γ and any link graph L with at least one isolated vertex and at least three vertices there are infinitely many connected graphs G with constant link L and AutG ? Γ.  相似文献   

10.
Determining the maximum number of edges in an n‐vertex C4‐free graph is a well‐studied problem that dates back to a paper of Erd?s from 1938. One of the most important families of C4‐free graphs are the Erd?s‐Rényi orthogonal polarity graphs. We show that the Cayley sum graph constructed using a Bose‐Chowla Sidon set is isomorphic to a large induced subgraph of the Erd?s‐Rényi orthogonal polarity graph. Using this isomorphism, we prove that the Petersen graph is a subgraph of every sufficiently large Erd?s‐Rényi orthogonal polarity graph.  相似文献   

11.
Let G be a connected graph with odd girth 2κ+1. Then G is a (2κ+1)‐angulated graph if every two vertices of G are connected by a path such that each edge of the path is in some (2κ+1)‐cycle. We prove that if G is (2κ+1)‐angulated, and H is connected with odd girth at least 2κ+3, then any retract of the box (or Cartesian) product GH is ST where S is a retract of G and T is a connected subgraph of H. A graph G is strongly (2κ+1)‐angulated if any two vertices of G are connected by a sequence of (2κ+1)‐cycles with consecutive cycles sharing at least one edge. We prove that if G is strongly (2κ+1)‐angulated, and H is connected with odd girth at least 2κ+1, then any retract of GH is ST where S is a retract of G and T is a connected subgraph of H or |V(S)|=1 and T is a retract of H. These two results improve theorems on weakly and strongly triangulated graphs by Nowakowski and Rival [Disc Math 70 ( 13 ), 169–184]. As a corollary, we get that the core of the box product of two strongly (2κ+1)‐angulated cores must be either one of the factors or the box product itself. Furthermore, if G is a strongly (2κ+1)‐angulated core, then either Gn is a core for all positive integers n, or the core of Gn is G for all positive integers n. In the latter case, G is homomorphically equivalent to a normal Cayley graph [Larose, Laviolette, Tardiff, European J Combin 19 ( 12 ), 867–881]. In particular, let G be a strongly (2κ+1)‐angulated core such that either G is not vertex‐transitive, or G is vertex‐transitive and any two maximum independent sets have non‐empty intersection. Then Gn is a core for any positive integer n. On the other hand, let Gi be a (2κi+1)‐angulated core for 1 ≤ in where κ1 < κ2 < … < κn. If Gi has a vertex that is fixed under any automorphism for 1 ≤ in‐1, or Gi is vertex‐transitive such that any two maximum independent sets have non‐empty intersection for 1 ≤ in‐1, then □i=1n Gi is a core. We then apply the results to construct cores that are box products with Mycielski construction factors or with odd graph factors. We also show that K(r,2r+1) □ C2l+1 is a core for any integers lr ≥ 2. It is open whether K(r,2r+1) □ C2l+1 is a core for r > l ≥ 2. © 2006 Wiley Periodicals, Inc. J Graph Theory  相似文献   

12.
Let G = (V, E) be a graph. A set S í V{S \subseteq V} is a total restrained dominating set if every vertex is adjacent to a vertex in S and every vertex of VS is adjacent to a vertex in VS. The total restrained domination number of G, denoted by γ tr (G), is the smallest cardinality of a total restrained dominating set of G. We show that if δ ≥ 3, then γ tr (G) ≤ nδ − 2 provided G is not one of several forbidden graphs. Furthermore, we show that if G is r − regular, where 4 ≤ r ≤ n − 3, then γ tr (G) ≤ n − diam(G) − r + 1.  相似文献   

13.
《Quaestiones Mathematicae》2013,36(2):237-257
Abstract

If n is an integer, n ≥ 2 and u and v are vertices of a graph G, then u and v are said to be Kn-adjacent vertices of G if there is a subgraph of G, isomorphic to Kn , containing u and v. For n ≥ 2, a Kn- dominating set of G is a set D of vertices such that every vertex of G belongs to D or is Kn-adjacent to a vertex of D. The Kn-domination number γKn (G) of G is the minimum cardinality among the Kn-dominating sets of vertices of G. It is shown that, for n ε {3,4}, if G is a graph of order p with no Kn-isolated vertex, then γKn (G) ≤ p/n. We establish that this is a best possible upper bound. It is shown that the result is not true for n ≥ 5.  相似文献   

14.
A graph is said to be K1,n-free, if it contains no K1,n as an induced subgraph. We prove that for n ? 3 and r ? n ?1, if G is a K1,n-free graph with minimum degree at least (n2/4(n ?1))r + (3n ?6)/2 + (n ?1)/4r, then G has an r-factor (in the case where r is even, the condition r ? n ?1 can be dropped).  相似文献   

15.
Let G = (V,E) be a graph and let S V. The set S is a packing in G if the vertices of S are pairwise at distance at least three apart in G. The set S is a dominating set (DS) if every vertex in VS is adjacent to a vertex in S. Further, if every vertex in VS is also adjacent to a vertex in VS, then S is a restrained dominating set (RDS). The domination number of G, denoted by γ(G), is the minimum cardinality of a DS of G, while the restrained domination number of G, denoted by γr(G), is the minimum cardinality of a RDS of G. The graph G is γ-excellent if every vertex of G belongs to some minimum DS of G. A constructive characterization of trees with equal domination and restrained domination numbers is presented. As a consequence of this characterization we show that the following statements are equivalent: (i) T is a tree with γ(T)=γr(T); (ii) T is a γ-excellent tree and TK2; and (iii) T is a tree that has a unique maximum packing and this set is a dominating set of T. We show that if T is a tree of order n with ℓ leaves, then γr(T) ≤ (n + ℓ + 1)/2, and we characterize those trees achieving equality.  相似文献   

16.
We study the amply regular diameter d graphs Γ such that for some vertex a the set of vertices at distance d from a is the set of points of a 2-design whose set of blocks consists of the intersections of the neighborhoods of points with the set of vertices at distance d-1 from a. We prove that the subgraph induced by the set of points is a clique, a coclique, or a strongly regular diameter 2 graph. For diameter 3 graphs we establish that this construction is a 2-design for each vertex a if and only if the graph is distance-regular and for each vertex a the subgraph Γ3(a) is a clique, a coclique, or a strongly regular graph. We obtain the list of admissible parameters for designs and diameter 3 graphs under the assumption that the subgraph induced by the set of points is a Seidel graph. We show that some of the parameters found cannot correspond to distance-regular graphs.  相似文献   

17.
The cochromatic number of a graph G, denoted by z(G), is the minimum number of subsets into which the vertex set of G can be partitioned so that each sbuset induces an empty or a complete subgraph of G. In this paper we introduce the problem of determining for a surface S, z(S), which is the maximum cochromatic number among all graphs G that embed in S. Some general bounds are obtained; for example, it is shown that if S is orientable of genus at least one, or if S is nonorientable of genus at least four, then z(S) is nonorientable of genus at least four, then z(S)≤χ(S). Here χ(S) denotes the chromatic number S. Exact results are obtained for the sphere, the Klein bottle, and for S. It is conjectured that z(S) is equal to the maximum n for which the graph Gn = K1K2 ∪ … ∪ Kn embeds in S.  相似文献   

18.
We consider the problem of finding a sparse set of edges containing the minimum spanning tree (MST) of a random subgraph of G with high probability. The two random models that we consider are subgraphs induced by a random subset of vertices, each vertex included independently with probability p, and subgraphs generated as a random subset of edges, each edge with probability p. Let n denote the number of vertices, choose p ∈ (0, 1) possibly depending on n, and let b = 1/(1 ? p). We show that in both random models, for any weighted graph G, there is a set of edges Q of cardinality O(n logbn) that contains the minimum spanning tree of a random subgraph of G with high probability. This result is asymptotically optimal. As a consequence, we also give a bound of O(kn) on the size of the union of all minimum spanning trees of G with some k vertices (or edges) removed. More generally, we show a bound of O(n logbn) on the size of a covering set in a matroid of rank n, which contains the minimum‐weight basis of a random subset with high probability. Also, we give a randomized algorithm that calls an MST subroutine only a polylogarithmic number of times and finds the covering set with high probability. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2006  相似文献   

19.
We prove that if Γ is a finite connected graph having the same convex subgraphs as the graph of the n-dimensional cube Qn (n?3), then |V(Γ)|?|V(Qn)|. Moreover, if |V(Γ)|=|V(Qn)|, Γ is isomorphic to Qn.  相似文献   

20.
Define a minimal detour subgraph of the n-dimensional cube to be a spanning subgraph G of Qn having the property that for vertices x, y of Qn, distances are related by dG(x, y) ≤ dQn(x, y) + 2. Let f(n) be the minimum number of edges of such a subgraph of Qn. After preliminary work on distances in subgraphs of product graphs, we show that The subgraphs we construct to establish this bound have the property that the longest distances are the same as in Qn, and thus the diameter does not increase. We establish a lower bound for f(n), show that vertices of high degree must be distributed throughout a minimal detour subgraph of Qn, and end with conjectures and questions. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号