首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The cyanide-isocyanide isomerization has been studied with ab initio calculations in an STO -3G basis as applied to NCNCO, NCCNO, NCOCN, and NCONC, and the corresponding isocyanides. Geometry optimization has been performed on these cyanides, their isocyanides, and their hypothetical transition states. The energies of isomerization were calculated to be 42.2, 29.8, 44.6, and 41.4 kcal/mol, respectively, while the energy barriers were found as 84.3, 67.5, 107.9, and 106.8 kcal/mol. Overlap populations and atomic charges were employed to provide simple correlations of the results.  相似文献   

2.
The reactions of two diaminotriazine ligands 2,4‐diamino‐6‐(2‐pyridyl)‐1,3,5‐triazine (2‐pydaT) and 6‐phenyl‐2,4‐diamino‐1,3,5‐triazine (PhdaT) with ruthenium–arene precursors led to a new family of ruthenium(II) compounds that were spectroscopically characterized. Four of the complexes were cationic, with the general formula [(η6‐arene)Ru(κ2N,N‐2‐pydaT)Cl]X (X=BF4, TsO; arene=p‐cymene: 1.BF4 , 1.TsO arene=benzene: 2.BF4 , 2.TsO ). The neutral cyclometalated complex [(η6p‐cymene)Ru(κ2C,N‐PhdaT*)Cl] ( 3 ) was also isolated. The structures of complexes 2.BF4 and 3.H2O were determined by X‐ray diffraction. Complex 1.BF4 underwent a partial reversible‐aquation process in water. UV/Vis and NMR spectroscopic measurements showed that the reaction was hindered by the addition of NaCl and was pH‐controlled in acidic solution. At pH 7.0 (sodium cacodylate) Ru–Cl complex 1.BF4 was the only species present in solution, even at low ionic strength. However, in alkaline medium (KOH), complex 1.BF4 underwent basic hydrolysis to afford a Ru–OH complex ( 5 ). Fluorimetric studies revealed that the interaction of complex 1.BF4 with DNA was not straightforward; instead, its main features were closely linked to ionic strength and to the [DNA]/complex ratio. The bifunctional complex 1.BF4 was capable of interacting concurrently through both its p‐cymene and 2‐pydaT groups. Cytotoxicity and genotoxicity studies showed that, contrary to the expected behavior, the complex species was biologically inactive; the formation of a Ru–OH complex could be responsible for such behavior.  相似文献   

3.
4.
5.
6.
7.
It was serendipitously observed that cis‐[PtCl2(NCEt)PPh3] reacted differently with either racemic or enantiopure 4‐aza[6]helicene, giving respectively cis (racemic) and trans (enantiopure) [PtIICl2(4‐aza[6]helicene)PPh3] complexes. This unexpected reactivity is explained through a dynamic process (crystallization‐induced diastereoselective transformation) and enables a new aspect of reactivity in chiral transition‐metal complexes to be addressed.  相似文献   

8.
Pincer PdII–isocyanide complexes are described that display intermolecular interactions and emissive 3MMLCT excited states in aggregation state(s) at room temperature. The intermolecular PdII?PdII and ligand–ligand interactions drive these complexes to undergo supramolecular polymerization in a living manner. Comprehensive spectroscopic studies reveal a pathway with a kinetic trap that can be modulated by changing the counteranion and metal atom. The PdII supramolecular assemblies comprise two different aggregation forms with only one to be emissive. DFT/TDDFT calculations lend support to the MMLCT absorption and emission of these pincer PdII–isocyanide aggregates.  相似文献   

9.
10.
The use of tetravalent cerium alkoxides, nitrates, and triflates was studied as a direct route to [CeIV(carbene)] complexes. Protonolysis reactions between 1H‐imidazolium‐ or imidazoline (=4,5‐dihydro‐1H‐imidazole)‐containing alkoxide proligands HL (L=OCMe2CH2[1‐C(NCHCHNiPr)]) and HLS (LS=OCMe2CH2[1‐C(NCH2CH2NiPr)]) and CeIV tert‐butoxide, triflate, and nitrate compounds were studied to target [CeIV(N‐heterocyclic carbene)] complexes (of unsaturated and saturated carbenes, resp.). Instead, tetravalent cerium imidazolium [(OtBu)3Ce(μ‐OtBu)2(μ‐HL)Ce(OtBu)3], or imidazolinium adducts [(OtBu)3Ce(μ‐OtBu)2(μ‐HLS)Ce(OtBu)3] were isolated. However, the salt metathesis of cerium triflate with KL provided a simple route to [CeL4], which was significantly improved if an external oxidant, benzoquinone, was included in the mixture to maintain oxidation‐state integrity. Likewise, the salt metathesis of cerium triiodide with KL and added benzoquinone provided a straightforward route to [CeL4].  相似文献   

11.
12.
13.
缪晓和  朱龙观 《无机化学学报》2010,26(10):1863-1867
本文报道2个新的包含[Ni3(dpa)4Cl2]组分的配合物,[Ni3(dpa)4Cl2]2CH3COCH3(1)和[Ni3(dpa)4Cl2]2/3CH3CN1/3C6H14(2),其中dpa-为2,2′-二吡啶胺负离子。结合文献已经发表的5个类似配合物,发现这些结构中Ni-Ni键长有一定差异,但Ni-Cl和Ni-N键长基本没有差异,显示出较少报道的键伸缩异构现象,而这种键伸缩异构现象出现的原因是分子结构的对称与不对称引起的。  相似文献   

14.
15.
16.
金属有机配合物的非线性光学特性   总被引:4,自引:1,他引:4  
从过渡金属有机配合物的中心金属、配体和几何结构的多样性、多变的金属氧化态和金属与配体的电子供-受作用评述了金属有机配合物的二阶、三阶非线性光学效应的分子结构特征和最新进展。参考文献26篇。  相似文献   

17.
Recent developments and results from the organometallic chemistry of the actinides are reviewed. In the last one and a half years the structural data of about 15 organometallic complexes of transuranium actinides (Np or Pu) have been published, all involving π-ligands in the coordination sphere of the metal ion. On the basis of these data, a comparison of these molecules is presented. Depending on the steric demands of the ligands, effects like the actinide contraction seem to be stronger or weaker in the structural features. This indicates that the interplay between the actinide ion and the π-ligand is rather flexible, enabling the formation of stable bonds over a broad range of actinide ion oxidation states.  相似文献   

18.
无机和金属有机多核分子树络合物   总被引:2,自引:0,他引:2  
王梅  何仁 《化学进展》1998,10(4):405-414
本文介绍近年来国外无机和金属有机多核分子树络合物的研究进展, 主要侧重于这类分子树络合物的设计合成、物化特性、催化反应及其应用前景。  相似文献   

19.
20.
The reliable interpretation of mass spectra for the determination of molecular constitutions requires systematic studies on the fragmentation behavior of classes of compounds, since the large number of kinetic and energy parameters that determine the decomposition of excited polyatomic ions makes ab-initio predictions of spectra almost impossible. In this progress report, a number of general rules for the decomposition of organometallic complexes upon electron impact are discussed; a classification into decomposition types is also presented, and is illustrated by selected examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号