首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New bis(phenoxy)naphthalene-containing poly(amide-imide)s having an inherent viscosity in the range of 0.62–1.09 dL/g were prepared by the direct polycondensation of 1,5-bis(4-trimellitimidophenoxy) naphthalene ( I ) and various aromatic diamines using triphenyl phosphite and pyridine as condensing agents in N-methyl-2-pyrrolidone (NMP) in the presence of calcium chloride. The diimide-diacid (I) was prepared by the condensation of 1,5-bis(4-aminophenoxy) naphthalene and trimellitic anhydride. Most of the polymers were soluble in aprotic solvents such as NMP and N,N-dimethylacetamide (DMAc), and afforded transparent, flexible and tough films upon casting from DMAc solutions. Measurements of wide-angle X-ray diffraction revealed that those polymers containing p-phenylene or oxyphenylene groups were characterized as crystalline polymers. Tensile strength and initial moduli of the polymer films ranged from 61–86 MPa and 1.83–2.21 GPa, respectively. Glass transition temperatures of the polymers were in the range of 231–340°C. The melting points of the crystalline polymers ranged from 375–430°C. The 10% weight loss temperatures were above 512°C in nitrogen and 481°C in air. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
Eleven bis(phenoxy) naphthalene-containing poly(amide-imide)s IIIa–k were synthesized by the direct polycondensation of 2,7-bis (4-aminophenoxy) naphthalene (DAPON) with various aromatic bis (trimellitimide)s IIa–k in N-methyl-2-pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. Poly (amide-imide)s IIIa–k having inherent viscosities of 0.70–1.12 dL/g were obtained in quantitative yields. The polymers containing p-phenylene or bis(phenoxy) benzene units exhibited crystalline x-ray diffraction patterns. Most of the polymers were readily soluble in various solvents such as NMP, N, N-dimethylacetamide, dimethyl sulfoxide, m-cresol, o-chlorophenol, and pyridine, and gave transparent, and flexible films cast from DMAc solutions. Cast films showed obvious yield points in the stress-strain curves and had strength at break up to 87 MPa, elongation to break up to 11%, and initial modulus up to 2.10 GPa. These poly(amide-imide)s had glass transition temperatures in the range of 255–321°C, and the 10% weight loss temperatures were recorded in the range of 529–586°C in nitrogen. The properties of poly(amideimide)s IIIa–k were compared with those of the corresponding isomeric poly (amide-imide)s III′ prepared from 2,7-bis(4-trimellitimidophenoxy) naphthalene and aromatic diamines. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
A dicarboxylic acid ( 1 ) bearing two pre-formed imide rings, was prepared from the condensation of 2,2-bis[4-(4-aminophenoxy)phenyl]propane and trimellitic anhydride. A new family of poly(amide-imide)s having inherent viscosities of 0.53–1.68 dL/g was prepared by the triphenyl phosphite activated polycondensation from the diimide—diacid I with various aromatic diamines in a medium consisting of N-methyl-2-pyrolidone (NMP), pyridine, and calcium chloride. Most of the resulting polymers showed an amorphous nature and were readily soluble in polar solvents such as NMP and N,N-dimethylacetamide. All the soluble poly(amide-imide)s afforded transparent, flexible, and tough films. The glass transition temperatures of these poly(amide-imide)s were in the range of 237–293°C and the 10% weight loss temperatures were above 508°C in nitrogen. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
A novel polymer-forming diimide–diacid, 2,6-bis(4-trimellitimidophenoxy)naphthalene, was prepared by the condensation reaction of 2,6-bis(4-aminophenoxy)naphthalene with trimellitic anhydride (TMA). A series of novel aromatic poly(amide–imide)s containing 2,6-bis(phenoxy)naphthalene units were prepared by the direct polycondensation of the diimide–diacid with various aromatic diamines using triphenyl phosphite (TPP) in N-methyl-2-pyrrolidone (NMP)/pyridine solution containing dissolved calcium chloride. Thirteen of the obtained polymers had inherent viscosities above 1.01 dL/g and up to 2.30 dL/g. Most of polymers were soluble in polar solvents such as DMAc and could be cast from their DMAc solutions into transparent, flexible, and tough films. These films had tensile strengths of 79–117 MPa, elongation-at-break of 7–61%, and initial moduli of 2.2–3.0 GPa. The wide-angle X-ray diffraction revealed that some polymers are partially crystalline. The glass transition temperatures of some polymers could be determined with the help of differential scanning calorimetry (DSC) traces, which were recorded in the range 232–300°C. All the poly(amide–imide)s exhibited no appreciable decomposition below 450°C, and their 10% weight loss temperatures were recorded in the range 511–577°C in nitrogen and 497–601°C in air. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 919–927, 1998  相似文献   

5.
A series of novel bis(phenoxy)naphthalene-containing polyamides having inherent viscosity up to 2.02 dL/g were synthesized by the direct polycondensation of the diamine 1,7-bis(4-aminophenoxy)naphthalene with various aromatic dicarboxylic acids in N-methyl-2-pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. Most of the polyamides could be readily dissolved in polar aprotic solvents such as N,N-dimethylacetamide and NMP, and could be solution-cast into transparent, flexible, and tough films. These polymers had glass transition temperatures in the range of 139–263°C, and 10% weight loss temperatures in nitrogen and air were above 499 and 484°C, respectively. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
A dicarboxylic acid ( I ) was prepared from the condensation of 9,9-bis[4-(4-aminophenoxy) phenyl] fluorene and trimellitic anhydride. A new family of poly(amide-imide)s having inherent viscosities of 0.75-1.04 dL/g was prepared by the triphenyl phosphite activated polycondensation from the diimide-diacid I with various aromatic diamines in a medium consisting of N-methyl-2-pyrrolidone (NMP), pyridine, and calcium chloride. Most of the resulting polymers showed an amorphous nature and were readily soluble in polar solvents such as NMP and N,N-dimethylacetamide. All the soluble poly(amide-imide)s afforded transparent, flexible, and tough films. The glass transition temperatures of these polymers were in the range of 262–325°C and the 10% weight loss temperatures were above 525°C in air. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
A new bis(phenoxy)naphthalene-containing diamine, 1,6-bis(4-aminophenoxy)naphthalene, was synthesized in two steps from the condensation of 1,6-dihydroxynaphthalene with p-chloronitrobenzene in the presence of potassium carbonate, giving 1,6-bis(4-nitrophenoxv)naphthalene, followed by hydrazine hydrate/Pd—C reduction. A series of polyamides were synthesized by the direct polycondensation of the diamine with various aromatic dicarboxylic acids in the N-methyl-2-pyrrolidone (NMP) solution containing dissolved metal salts such as CaCl2 or LiBr using triphenyl phosphite and pyridine as condensing agents. The polymers were obtained in quantitative yield with inherent viscosities of 0.78–3.72 dL/g. Most of the polymers were soluble in aprotic solvents such as N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), NMP, and they could be solution-cast into transparent, flexible and tough films. The casting films had tensile strength of 102–175 MPa, elongation at break of 8–42%, and tensile modulus of 2.4–3.8 GPa. The polymers derived from rigid dicarboxylic acids such as terephthalic acid and 4,4′-biphenyldicarboxylic acid exhibited some crystalline characteristics. The glass transition temperatures of the polyamides were in the range of 238–337°C, and their 10% weight loss temperatures were above 487°C in nitrogen and above 438°C in air. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
A new bis(phenoxy)naphthalene-containing diamine, 1,5-bis(4-aminophenoxy)naphthalene, was synthesized in two steps from the condensation of 1,5-dihydroxy-naphthalene with p-chloronitrobenzene in the presence of potassium carbonate, giving 1,5-bis(4-nitrophenoxy)naphthalene, followed by hydrazine hydrate/Pd? C reduction. A series of polyamides and copolyamides were synthesized by the direct polycondensation of the diamine with various aromatic dicarboxylic acids or with mixed dicarboxylic acids in N-methyl-2-pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. The polymers having inherent viscosity of 0.81–1.25 dL/g were obtained in quantitative yield. Most of the polymers were generally soluble in aprotic solvent such as N,N-dimethylacetamide, N-methyl-2-pyrrolidone, etc. The polymers derived from rigid dicarboxylic acids such as terephthalic acid, naphthalene dicarboxylic acid, and 4,4′-biphenyldicarboxylic acid exhibited crystalline patterns. Glass transition temperatures of polymers were in the range of 230–360°C, and 10% weight loss temperatures in nitrogen and air were above 492 and 470°C, respectively. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
Fifteen bis(phenoxy) fluorene-containing poly(amide-imide)s III were synthesized by the direct polycondensation of 9,9-bis[4-(4-aminophenoxy)phenyl]fluorene (BAPPF) with var-ious aromatic bis(trimellitimide)s II in N-methyl-2-pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. Poly(amide-imide)s III having inherent vis-cosities up to 1.45 dL/g were obtained in quantitative yields. Most of the resulting polymers showed an amorphous nature and were readily soluble in polar solvents such as NMP and N,N-dimethylacetamide. All the soluble poly(amide-imide)s afforded transparent, flexible, and tough films. The glass transition temperatures of these polymers were in the range of 263–315°C and the 10% weight loss temperatures were above 510°C in nitrogen. Some properties of poly(amide-imide)s III were compared with those of the corresponding isomeric poly(amide-imide)s III ′ prepared from 9,9-[4-(4-trimellitimidophenoxy)phenyl]fluorene and various aromatic diamines. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
Novel aromatic poly(amide-imide)s with high inherent viscosities were prepared by direct polycondensation reaction of 2,5-bis(4-trimellitimidophenyl)-3,4-diphenylthiophene ( IV ) and aromatic diamines using triphenyl phosphite in the N-methyl–2-pyrrolidone (NMP)/pyridine solution containing dissolved CaCl2. The diimide-diacid IV was readily obtained by the condensation reaction of 2,5-bis(4-aminophenyl)-3,4-diphenylthiophene ( III 1) with trimellitic anhydride. The obtained poly(amide-imide)s showed high thermostability. Their decomposition temperatures at 10% weight loss in nitrogen atmospheres were above 550°C and the anaerobic char yield at 800°C ranged from 48 to 68%. Almost all the poly(amide-imide)s showed high glass transition temperatures above 300°C by differential scanning calorimetry (DSC) measurements. These polymers were readily soluble in various organic solvents and could be cast into transparent, tough, and flexible films. Their casting films showed obvious yield points in the stress-strain curves and had strength at break up to 74.2 MPa, elongation to break up to 70.1%, and initial modulus up to 4.56 GPa. The factors affecting the reaction of diimide-diacid IV and 4,4′-oxydianiline in view of monomer concentration, reaction temperature, and amount of CaCl2 were also investigated. © 1992 John Wiley & Sons, Inc.  相似文献   

11.
2,6-Bis(4-aminophenoxy)naphthalene (2,6-BAPON) was synthesized in two steps from the condensation of 2,6-dihydroxynaphthalene with p-chloronitrobenzene in the presence of potassium carbonate, giving 2,6-bis(4-nitrophenoxy)naphthalene, followed by hydrazine hydrate/Pd—C reduction. A series of new polyamides were synthesized by the direct polycondensation of 2,6-BAPON with various aromatic dicarboxylic acids in the N-methyl-2-pyrrolidone (NMP) solution containing dissolved metal salts such as CaCl2 or LiCl using triphenyl phosphite and pyridine as condensing agents. The polymers were obtained in quantitative yields with inherent viscosities of 0.62–2.50 dL/g. Most of the polymers were soluble in aprotic dipolar solvents such as N,N-dimethylacetamide (DMAc) and NMP, and they could be solution cast into transparent, flexible, and tough films. The casting films had yield strengths of 84–105 MPa, tensile strengths of 68–95 MPa, elongations at break of 8–36%, and tensile moduli of 1.4–2.1 GPa. The glass transition temperatures of the polyamides were in the range 155–225°C, and their 10% weight loss temperatures were above 505°C in nitrogen and above 474°C in air. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2147–2156, 1997  相似文献   

12.
Alternate poly(amide-imide) [P(A-alt-I)] was synthesized from two aromatic diamines and trimellitic anhydride (TMA). When the diamine was 2,2-bis[4-(3-aminophenoxy)phenyl]sulfone (BAPS), the resulted P(A-alt-I) was found to be of light color. Specifically, when BAPS was located between two amide groups in the P(A-alt-I) chain, the P(A-alt-I) was almost colorless. A series of P(A-alt-I)s (Series III) containing BAPS was synthesized through direct polycondensation of an aromatic dicarboxylic acid prepared from various aromatic diamines and TMA, as well as BAPS. Polymers of Series III were much lighter in color than those of the isomeric series (BAPS was located between two imide group). The series of P(A-alt-I)s III had inherent viscosities ranging 0.69–1.35 dL/g and good solubility in various solvents. The tensile strengths, elongations to break, and initial moduli of the films were 72–107 MPa, 7–12% and 1.93–2.39 GPa, respectively, and most of the films had no yielding. Polymers of Series III had glass transition temperatures 210–272°C and 10% weight loss temperatures in nitrogen 518–545°C, indicating excellent thermal stability. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2421–2428, 1999  相似文献   

13.
A new dicarboxylic acid having a kinked structure was synthesized from the condensation of 2,2′-bis(4-aminophenoxy)biphenyl and trimellitic anhydride. A series of biphenyl-2,2′-diyl-containing aromatic poly(amide-imide)s having inherent viscosities of 0.23–0.94 dL/g was prepared by the triphenyl phosphite activated polycondensation from the diimide-diacid II with various aromatic diamines in a medium consisting of N-methyl-2-pyrrolidone (NMP), pyridine, and calcium chloride. Most of the resulting polymers showed an amorphous nature and were readily soluble in a variety of organic solvents including NMP and N,N-dimethylacetamide (DMAc). Transparent, flexible, and tough films of these polymers could be cast from DMAc or NMP solutions. The glass transition temperatures of these polymers were in the range of 227–261°C and the 10% weight loss temperatures were above 520°C in nitrogen. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1169–1177, 1998  相似文献   

14.
A series of novel bis(phenoxy)phthalimidine-containing poly(amide-imide)s III were synthesized by the direct polycondensation of 3,3-bis[4-(4-aminophenoxy)phenyl]phthalimidine (BAPP) with various aromatic bis(trimellitimide)s in N-methyl-2-pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. Poly(amide-imide)s III , having inherent viscosities up to 1.36 dL/g, were obtained in quantitative yields. All resulting polymers showed an amorphous nature and were readily soluble in polar solvents such as NMP and N,N-dimethylacetamide. All the soluble poly(amide-imide)s afforded transparent, flexible, and tough films. The glass transition temperatures of these polymers were in the range of 267–322°C and the 10% weight loss temperatures were above 490°C in nitrogen. Some properties of poly(amide-imide)s III were compared with those of the corresponding isomeric poly(amide-imide)s III′ prepared from 3,3-[4-(4-trimellitimidophenoxy)phenyl]-phthalimidine and various aromatic diamines. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
The novel diamine, 1,7-bis(4-aminophenoxy)naphthalene (1,7-BAPON), was synthesized and used to prepared polyimides. 1,7-BAPON was synthesized through the nucleophilic displacement of 1,7-dihydroxynaphthalene with p-fluoronitrobenzene in the presence of K2CO3 followed by catalytic-reduction. Polyimides were prepared from 1,7-BAPON and various aromatic tetracarboxylic dianhydrides by the usual two-step procedure that included ring-opening polyaddition to give poly(amic acid)s, followed by cyclodehydration to polyimides. The poly(amic acid)s had inherent viscosities of 0.74-2.48 dL/g. Most of the polyimides formed tough, creasible films. These polyimides had glass transition temperatures between 247–278°C and their 10% weight loss temperatures were recorded in the range of 515–575°C in nitrogen atmosphere. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
1,6-Bis(4-aminophenoxy)naphthalene ( I ) was used as a monomer with various aromatic tetracarboxylic dianhydrides to synthesize polyimides via a conventional two-stage procedure that included ring-opening polyaddition in a polar solvent such as N,N-dimethylacetamide (DMAc) to give poly(amic acid)s, followed by thermal cyclodehydration to polyimides. The diamine ( I ) was prepared through the nucleophilic displacement of 1,6-dihydroxynaphthal-ene with p-chloronitrobenzene in the presence of K2CO3, followed by catalytic reduction. Depending on the dianhydrides used, the poly(amic acid)s obtained had inherent viscosities of 0.73–2.31 dL/g. All the poly(amic acid)s could be solution cast and thermally converted into transparent, flexible, and tough polyimide films. The polyimide films had a tensile modulus range of 1.53–1.84 GPa, a tensile strength range of 95–126 MPa, and an elongation range at break of 9–16%. The polyimide derived from 4,4′-sulfonyldiphthalic anhydride (SDPA) had a better solubility than the other polyimides. These polyimides had glass transition temperatures between 248–286°C (DSC). Thermogravimetric analyses established that these polymers were fairly stable up to 500°C, and the 10% weight loss temperatures were recorded in the range of 549–595°C in nitrogen and 539–590°C in air atmosphere. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
Novel aromatic polyimides containing bis(phenoxy)naphthalene units were synthesized from 1,5-bis(4-aminophenoxy)naphthalene (APN) and various aromatic tetracarboxylic dianhydrides by the usual two-step procedure that included ring-opening polyaddition in a polar solvent such as N,N-dimethylacetamide (DMAc) to give poly(amic acid)s, followed by cyclodehydration to polyimides. The poly(amic acid)s had inherent viscosities between 0.72 and 1.94 dL/g, depending on the tetracarboxylic dianhydrides used. Excepting the polyimide IVb obtained from 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA), all other polyimides formed brown, flexible, and tough films by casting from the poly(amic acid) solutions. The polyimide synthesized from BPDA was characterized as semicrystalline, whereas the other polyimides showed amorphous patterns as shown by the x-ray diffraction studies. Tensile strength, initial moduli, and elongation at break of the APN-based polyimide films ranged from 105–135 MPa, 1.92–2.50 GPa, and 6–7%, respectively. These polyimides had glass transition temperatures between 228 and 317°C. Thermal analyses indicated that these polymers were fairly stable, and the 10% weight loss temperatures by TGA were recorded in the range of 543–574°C in nitrogen and 540–566°C in air atmosphere, respectively. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
A naphthalene unit-containing bis(ether anhydride), 2,7-bis(3,4-dicarboxyphenoxy)naphthalene dianhydride, was prepared in three steps starting from the nucleophilic nitrodisplacement reaction of 2,7-dihydroxynaphthalene and 4-nitrophthalonitrile in N,N-dimethylformamide (DMF) solution in the presence of potassium carbonate followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and subsequent dehydration of the resulting bis(ether diacid). High-molar-mass aromatic poly(ether imide)s were synthesized using a conventional two-stage polymerization process from the bis(ether anhydride) and ten aromatic diamines. The intermediate poly(ether amic acid)s had inherent viscosities of 0.95–2.67 dL/g. The films of poly(ether imide)s derived from two rigid diamines, that is, p-phenylenediamine and benzidine, crystallized and embrittled during the thermal imidization process. The other poly(ether imide)s belonged to amorphous materials and could be fabricated into transparent, flexible, and tough films. These poly(ether imide) films had yield strengths of 91–115 MPa, tensile strengths of 89–136 MPa, elongation to break of 11–45%, and initial moduli of 1.7–2.2 GPa. The Tgs of poly(ether imide)s were recorded in the range of 222–256°C depending on the nature of the diamine moiety. All polymers were thermally stable up to 500°C, with 10% weight loss being recorded above 540°C in air and nitrogen atmospheres. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2281–2287, 1997  相似文献   

19.
Seven imidodicarboxylic acids II -1 to 5, II -10, and II -11 were prepared from trimellitic anhydride and ω-amino acids, such as glycine, β-alanine, 4-aminobutyric acid, 5-aminopentanoic acid, 6-aminohexanoic acid, 11-aminoundecanoic acid, and 12-aminododecanoic acid. Several aliphatic-aromatic poly(amide-imide)s were prepared by triphenyl phosphite promoted polycondensation reaction from the combination of 3-(4-carboxyphthalimido)propionic acid ( II -2) or 6-(4-carboxyphtalimido)hexanoic acid ( II -5) with various aromatic diamines and of all the imidodiacids with p-phenylenediamine or 4,4′-oxydianiline. All poly(amide-imide)s were characterized by inherent viscosity, gel permeation chromatography (GPC) measurements, solubility, tensile test, wide-angle X-ray scatting patterns, differential scanning calorimetry (DSC) measurements, and thermogravimetric (TGA) analyses. Effects of structural changes such as polymethylene length and diamine moieties on the properties of poly(amide-imide)s were studied. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
A new naphthalene unit-containing bis(ether anhydride), 2,6-bis(3,4-dicarboxyphenoxy)naphthalene dianhydride, was synthesized in three steps starting from the nucleophilic nitrodisplacement reaction of 2,6-dihydroxynaphthalene and 4-nitrophthalonitrile in N,N-dimethylformamide (DMF) solution in the presence of potassium carbonate, followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and subsequent dehydration of the resulting bis(ether diacid). High-molar-mass aromatic poly(ether imide)s were prepared using a conventional two-step polymerization process from the bis(ether anhydride) and various aromatic diamines. The intermediate poly(ether amic acid)s had inherent viscosities of 0.65–2.03 dL/g. The films of poly(ether imide)s derived from two rigid diamines, i.e. p-phenylenediamine and benzidine, crystallized during the thermal imidization process. The other poly(ether imide)s belonged to amorphous materials and could be fabricated into transparent, flexible, and tough films. These aromatic poly(ether imide) films had yield strengths of 104–131 MPa, tensile strengths of 102–153 MPa, elongation to break of 8–87%, and initial moduli of 1.6–3.2 GPa. The glass transition temperatures (Tg's) of poly(ether imide)s were recorded in the range of 220–277°C depending on the nature of the diamine moiety. All polymers were stable up to 500°C, with 10% weight loss being recorded above 550°C in both air and nitrogen atmospheres. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1657–1665, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号