首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Treatment of (±)-cis-N-(3-methyl-4-piperidyl)-N-phenylpropanamide (2) with styrene oxide (1) yielded a mixture of (±)-cis-N-[1-(2-hydroxy-2-phenylethyl)-3-methyl-4-piperidyl]-N-phenylpropanamide (3) and (±)-cis-N-[1-(2-hydroxy-1-phenylethyl)-3-methyl-4-piperidyl]-N-phenylpropanamide (4) . The structure of compound 3 was confirmed by an unambiguous synthesis via (±)-cis-N-[1-(2-oxo-2-phenylethyl)-3-methyl-4-piperidyl]-N-phenylpropanamide (6) . The proton and carbon-13 resonances of compounds 3 and 4 were assigned with the aid of two-dimensional heteronuclear correlation experiments.  相似文献   

2.
A facile novel synthesis of (±)-O-methylcannabichromene ( 5d ) together with (±)-2-methyl-2-(4-methyl-3-pentenyl)-5-methoxy-2H-benzopyran ( 5a ) and its 7-methyl ( 5b ) and 7-propyl ( 5c ) homologues, using organolithium salts is described.  相似文献   

3.
A new and convenient procedure for the synthesis of 1,6-naphthyridin-2(1H)-ones and their derivatives is described. In the first scheme 5-acetyl-6-[2-(dimethylamino)ethenyl]-1,2-dihydro-2-oxo-3-pyridinecarbonitrile ( 4 ) obtained by the reaction of N,N-dimethylformamide dimethyl acetal with 5-acetyl-1,2-dihydro-6-methyl-2-oxo-3-pyridinecarbonitrile ( 3 ) was cyclized to 1,2-dihydro-5-methyl-2-oxo-1,6-naphthyridine-3-carbonitrile ( 5 ) by the action of ammonium acetate. Thermal decarboxylation of acid 7 obtained from the hydrolysis of nitrile 5 led to a mixture of 5-methyl-1,6-naphthyridin-2(1H)-one ( 8 ) and its dimer 9 . Hydrazide 11 obtained from nitrile 5 in two steps was converted to 3-amino-5-methyl-1,6-naphthyridin-2(1H)-one ( 12 ) by the Curtius rearrangement. The amino group of 12 was readily replaced by treatment with aqueous sodium hydroxide to yield 3-hydroxy-5-methyl-1,6-naphthyridin-2(1H)-one ( 13 ). In the second scheme, Michael reaction of enamines of type 20 with methyl propiolate, followed by ring closure gave 5-acyl(aroyl)-6-methyl-2(1H)-pyridinones ( 21 ) which in turn were treated with Bredereck's reagent to produce 5-acyl(aroyl)-6-[2-(dimethylamino)ethenyl]-2(1H)-pyridinones ( 22 ). Treatment of 22 with ammonium acetate led to the formation of 1,6-naphthyridin-2(1H)-ones 23 .  相似文献   

4.
The reaction of methyl 2-bromo-6-(trifluoromethyl)-3-pyridinecarboxylate ( 1 ) with methanesulfonamide gave methyl 2-[(methylsulfonyl)amino]-6-(trifluoromethyl)-3-pyridine-carboxylate ( 2 ). Alkylation of compound 2 with methyl iodide followed by cyclization of the resulting methyl 2-[methyl(methylsulfonyl)amino]-6-(trifluoromethyl)-3-pyridinecarboxylate ( 3 ) yielded 1-methyl-7-(trifluoromethyl)-1H-pyrido[2,3-c][1,2]thiazin-4(3H)-one 2,2-dioxide ( 4 ). The reaction of compound 4 with α,2,4-trichlorotoluene, methyl bromopropionate, methyl iodide, 3-trifluoromethylphenyl isocyanate, phenyl isocyanate and 2,4-dichloro-5-(2-propynyloxy)phenyl isothiocyanate gave, respectively, 4-[(2,4-dichlorophenyl)methoxy]-1-methyl-7-(trifluoromethyl)-1H-pyrido[2,3-c][1,2]thiazine 2,2-dioxide ( 5 ), methyl 2-[[1-methyl-2,2-dioxido-7-(trifluoromethyl)-1H-pyrido[2,3-c][1,2]thiazin-4-yl]oxy]propanoate ( 6 ), 1,3,3-trimethyl-7-(trifluoromethyl)-1H-pyrido[2,3-c][1,2]thiazin-4(3H)-one 2,2-dioxide ( 7 ), 4-hydroxy-1-methyl-7-(trifluoromethyl)-N-[3-(trifluoromethyl)phenyl]-1H-pyrido[2,3-c][1,2]thiazine-3-carboxamide 2,2-dioxide ( 8 ), 4-hydroxy-1-methyl-7-(trifluoromethyl)-N-phenyl-1H-pyrido[2,3-c][1,2]thiazine-3-carboxamide 2,2-dioxide ( 9 ) and N-[2,4-dichloro-5-(2-propynyloxy)phenyl]-4-hydroxy-1-methyl-7-(trifluoromethyl)-1H-pyrido[2,3-c][1,2] thiazine-3-carboxamide 2,2-dioxide ( 10 ).  相似文献   

5.
Oxindole 11 , obtained on 3-[2′-(dimethylamino)ethyl]alkylation of oxindole 12 , yielded, on stereoselective reduction with sodium dihydridobis(2-methoxyethoxy)aluminate, aminoalcohol 8 (Scheme 2). The quaternary methiodide 10 , obtained from 8 with MeI, gave, in nucleophilic displacements concurring with a Hofmann elimination, (±)-esermethole 6 , (±)-5-O-methylphysovenol ( 14 ), (±)-5-O-methyl-1-thiaphysovenol ( 15 ), and (±)-1-benzyl-1-demethylesermethole ( 16 ). Syntheses of (±)-1-benzyl-1-demethylphenserine ( 18 ), (±)-1-demethylphenserine ( 19 ), and (±)-phenserine ( 4 ) from 6 and 16 are described. Optically active 8a and 8b , obtained by chemical resolution, similarly gave the enantiomers 6a and 14a–16a of the (3aS)-series (prepared earlier from physostigmine ( 1a )) and their (3R)-enantiomers. The anticholinesterase activity of (±)- 4 , (±)- 18 , and (±)- 19 was compared with that of their optically active enantiomers.  相似文献   

6.
Syntheses of (±)-2-exo-cyano-1-methyl-7-oxabicyclo[2.2.1]hept-5-en-2-endo-yl acetate ( 1 ) and of (±)-1-methyl-7-oxabicyclo[2.2.1]hept-5-en-2-one ( 2 ) are reported. The additon of PhSeCl to 1 afforded (±)-5-endo-chloro-2-exo-cyano-1-methyl-6-exo-(phenylselenenyl)-7-oxabicyclo[2.2.1]hept-2-endo-yl acetate ( 6 ), whereas 2 added to PhSeCl with the opposite regioselectivity giving (±)-6-endo-chloro-1-methyl-5-exo-(phenylselenenyl)-7-oxabicyclo[2.2.1]heptan-2-one ( 7 ). These adducts were converted into 5-chloro-1-methyl-7-oxabicyclo[2.2.1]hept-5-en-2-one ( 9 ) and 6-chloro-1-methyl-7-oxabicyclo[2.2.1]hept-5-en-2-one ( 10 ), respectively.  相似文献   

7.
The geometric parameters, the charge distribution, and the energetics of N-methyl-2-(N-ethylanilino)-3-(indol-1-yl)-and N-methyl-2-(N-ethylanilino)-3-(indol-3-yl)maleimides and their conjugated acids were studied by density functional theory calculations at the B3LYP/6-31G(d) level. The mechanism of the tandem hydride transfer/cyclization sequence, which occurs after protonation of N-methyl-2-(N-ethylanilino)-3-(indol-1-yl)-and N-methyl-2-(N-ethylanilino)-3-(indol-3-yl)maleimides, was analyzed. The investigation of the potential energy surface for the tandem hydride transfer/cyclization of the iminium cation that formed upon protonation revealed that the hydride transfer followed by intramolecular cyclization at position 7 of the indole fragment in N-methyl-2-(N-ethylanilino)-3-(indol-1-yl)maleimide is the preferable process, unlike alternative intramolecular cyclization involving the cationic center at the C(2) atom of the indole fragment and the benzene ring of the N-ethylaniline fragment of the indoleninium cation in N-methyl-2-(N-ethylanilino)-3-(indol-3-yl)maleimide. A study of the key intermediates of the assumed reaction mechanism demonstrated that these intermediates are actually stationary points on the potential energy surface (minima and transition states). Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2069–2073, December, 2006.  相似文献   

8.
Reaction of readily available 2-methyl-4-formylthiazole ( 1 ) with glyoxal and ammonia gave 2-(2-methyl-4-thiazolyl)imidazole ( 2 ). Nitration of 2 with a mixture of nitric acid-sulfuric acid at 100° yielded 2-(2-methyl-4-thiazolyl)-4,5-dinitroimidazole ( 3 ) as the sole reaction product, while nitration at 65° afforded 2-(2-methyl-4-thiazolyl)-4-(or 5)-nitroimidazole ( 4 ). N-Methylation of compound 4 in the presence of base gave 1-methyl-2-(2-methyl-4-thiazolyl)4-nitroimidazole ( 6 ), whereas N-methylation with diazomethane afforded 1-methyl-2-(2-methyl-4-thiazolyl)-5-nitroimidazole ( 5 ). N-Methylation of compound 3 yielded 1-methyl-2-(2-methyl-4-thiazolyl)-3,5-dinitroimidazole ( 7 ) in high yield.  相似文献   

9.
Photochemical Reaction of Optically Active 2-(1′-Methylallyl)anilines with Methanol It is shown that (?)-(S)-2-(1′-methylallyl)aniline ((?)-(S)- 4 ) on irradiation in methanol yields (?)-(2S, 3R)-2, 3-dimethylindoline ((?)-trans- 8 ), (?)-(1′R, 2′R)-2-(2′-methoxy-1′-methylpropyl)aniline ((?)-erythro- 9 ) as well as racemic (1′RS, 2′SR)-2-(2′-methoxy-1′-methylpropyl) aniline ((±)-threo- 9 ) in 27.1, 36.4 and 15.7% yield, respectively (see Scheme 3). By deamination and chemical correlation with (+)-(2R, 3R)-3-phenyl-2-butanol ((+)-erythro- 13 ; see Scheme 4) it was found that (?)-erythro- 9 has the same absolute configuration and optical purity as the starting material (?)-(S)- 4 . Comparable results are obtained when (?)-(S)-N-methyl-2-(1′-methylallyl)aniline ((?)-(S)- 7 ) is irradiated in methanol, i.e. the optically active indoline (+)-trans- 10 and the methanol addition product (?)-erythro- 11 along with its racemic threo-isomer are formed (cf. Scheme 3). These findings demonstrate that the methanol addition products arise from stereospecific, methanol-induced ring opening of intermediate, chiral trans, -(→(?)-erythro-compounds) and achiral cis-spiro [2.5]octa-4,6-dien-8-imines (→(±)-threo-compounds; see Schemes 1 and 2).  相似文献   

10.
Acylation of 4-amino-3-hydroxy-1-naphthalenesulfonic acid ( 3 ) with benzoyl chloride in pyridine gave pyridinium 3-hydroxy-4-(N-benzoylamino)-1-naphthalenesulfonate ( 12 ) which was converted by thionyl chloride followed by diethylamine into N,N-diethyl-2-phenylnaphth[1,2-d]oxazole-5-sulfonamide ( 14 ). The naphthoxazole moiety was hydrolyzed with potassium hydroxide and the resulting N,N-diethyl-4-amino-3-hydroxy-1-naphthalenesulfonamide ( 11 ) coupled with 1-alkyl-3-methyl-5-pyrazolones. The 2-phenylnaphth[1,2-d]oxazole intermediates and various by-products were investigated.  相似文献   

11.
Preparation of (±)-3-methoxy-16-t-butylmorphinan ( 4 ) by reaction of t-butyl lithium with (±)-3-methoxy-N-chloromorphinan ( 1 ) is described. The structure of 4 was confirmed by X-ray crystallography.  相似文献   

12.
《Tetrahedron: Asymmetry》2005,16(19):3139-3142
We report herein, the novel enzymatic desymmetrization of 2-tert-butoxycarbonylamino-2-methyl-1,3-propanediol 1. This method makes it possible to prepare (S)-N-Boc-N,O-isopropylidene-α-methylserinal 3, which is a chiral building block for the synthesis of a variety of α-substituted alanine derivatives. Moreover, optically active (4R)-methyl-4-[2-(thiophen-2-yl)ethyl]oxazolidin-2-one 4, one of the key intermediates in the synthesis of a novel immunosuppressant, has been prepared by this methodology.  相似文献   

13.
Synthesis of (±)-Diplodialide B and A Two steroid hydroxylase inhibitors, diplodialide B (1) and A (2) have been synthesized in the following way: The lithium enolate 5 of S-t-butyl thioacetate (4) was added to (E)-7-(2′-tetrahydropyranoxy)-2-octen-1-al (8) and the newly formed 3-hydroxy group in the product 9 was protected as t-butyl-diphenyl silyl ether followed by selective hydrolysis of the tetrahydropyranyl ether to give 10. Treatment with AgNO3/H2O cleaved the S-t-butyl ester group in 10 to give the corresponding hydroxy carboxylic acid which was converted into the S-2-pyridyl thioester by treatment with di(2-pyridyl)disulfide and triphenyl phosphine and cyclized with AgClO4 to give the (4E,3,9-trans)- and (4E,3,9-cis)-lactone 11 and 12 (R?t-Bu(C6H5)2Si) in 67% yield. Chromatographic separation of 11 and 12 and cleavage of the t-butyl-diphenyl silyl ether with tetrabutyl ammonium fluoride yielded (±)-diplodialide B (1) with (4E,3,9-trans)-configuration and the (4E,3,9-cis)-isomer 12 (R?H). Both isomers could be oxidized to diplodialide A (2) with manganese dioxide. The synthesis described above has also been carried out via the intermediates 10 , 11 and 12 with R?COOCH2CH2Si(CH3)3.  相似文献   

14.
(±)-N-Norgalanthamine (la) and (±)-N-norlycoramine (Ib) was synthesized through the phenolie oxidation of N-(4-hydroxyphenethyl)-2-bromo-5-hydroxy-4-methoxybenzamide (lIb).  相似文献   

15.
An efficient method was employed for the preparation of 2-(benzylideneamino)-N-[(R)-2-hydroxy-2-methyl-1-phenylpropyl] acetamide utilizing optically pure (R)-5,5-dimethyl-4-phenyloxazolidin-2-one. This product showed interesting dynamic NMR properties for the methylene protons adjacent to the azomethine group (ΔG? = 15.1 ± 0.1 kcal mol-1).  相似文献   

16.
(5S)-1-Benzoyl-3-[(E)-cyanomethylidene]-5-(methoxycarbonyl)pyrrolidin-2-one ( 5 ) was prepared in four steps from L -pyroglutamic acid ( 1 ). 1,3-Dipolar cycloadditions of diazomethane ( 6 ) and 2,4,6-trimethoxybenzonitrile oxide ( 7 ) gave substituted 1,2,7-triazaspiro[4.4]non-1-en-6-one 12 and 1-oxa-2,7-diazaspiro[4,4]non-1-en-6-one 13 in 38 and 20% de, respectively. On the other hand, reaction of 5 with N-phenylbenzonitrile imines 8 and 9 , generated in situ from the corresponding hydrazonoyl chlorides 10 and 11 , respectively, and Et3N, furnished racemic pyrrolo[3,4-c]pyrazoles 14 and 15 in 61 and 56% de, respectively. Cycloaddition of nitrile oxide 7 , when performed in the presence of Et3N, led to pyrrolo[3,4-d]isoxazole 16 in 85% de.  相似文献   

17.
Base hydrolysis of optically pure mer-exo(H)- and mer-endo(H)-[CoCl(dien)(dapo)]2+ ( A and B (X = Cl)), resp.; dien = N-(2-aminoethyl)ethane-1,2-damine; dapo = 1,3-diaminopopan-2-ol, kOH = (1.13 ±0.09)·105 M?1s?1 ( A (X = Cl), kOH = (1.18 ± 0.11)·105M?1s?1 ( B (X = Cl)); I = 1.0M (NaClO4 or NaN3)1, T = 298 K) is accompanied by retention of the mer-geometry and full racemization (99 ± 1%). It is shown this is not due to racemization of either reactants or products. This result, together with the fact that both A and B yield the same mer-exo(H)-product distribution, indicates the intermediacy of a pentacoordinate species II which is symmetrical (at least in the time average), viz. trigonal bipyramidal with a deprotonated (‘flat’) secondaryamine moiety. The H-exchange rates of the coordinated amine groups are consistent with this interpretation and indicate that loss of Cl? is the rate-determining step, in agreement with an SN1CB mechanism. The reactivity of the unsym-fac-exo(OH)- and unsy,-fac-endo(OH)-isomers C and D , respectively, is in sharp contrast: base hydrolysis is 3 orders of magnitue slower, and the reaction is accompanied by some change of coordination geometry ( C , 23%; D , 10%, some inversion of configuration ( C , 15%; D , 19%)); much lower acceleration of hydrolysis in base (106 vs. 1010). Azide competition during base hydrolysis of the mer-isomer A and B is quite large (R = [CoN3]/[CoOH][N] = 1.4 ±0.2M?1, I= 1.0M, T = 298 K) and indicates that the coordinatively unsaturated intermediate II is highly selective. The ratios of exo(H)- and endo(H)-azide competition products A and B (X = N3), respectively, immediately after the substitution reaction (kinetic control) are independent of the engaged epierm A or B : 31.7 ± 0.9% of B (X = N3) and 68.3 ± 0.9% of A (X = N3, determined after ca. 10.t½ of the base hydrolysis). This is agreement with the effective site of deprotonation at the secondayr(central)-amine group of dien, cis to the leaving group X , and with a common set of intermediates. Epimerization of A and B (X = Cl, N3) is shown to proceed solely via the pentacoordinate (base hydrolysis) intermediate II , viz. the direct route involving a six-coordinate deprotonated intermediate is immeasurably slow. For the hydroxo products A and B (X = OH), the direct rotue may compete with the H2O-substitution(exchange) path which can occur by an internal conjugate-base process. The kinetically controlled distribution of complexes A/B (X = N3) is different from the quasi-thermodynamic one (19.1 ± 0.8% of B (X = N3) and 80.9 ± 0.8% of A (X = N3)). This is consistent with the differences in the base-hydrolysis rates of the reactants (kOh ( A (X = N3))= (1.59 ± 0.04)·102M?1s?1; kOH ( B (X = N3)) = (2.89 ± 0.22).102M?1s?1). Various aspects of the investigated reactions are discussed on the basis of the widely studied reaction of base hydrolysis of pentaaminecobalt(III) complexes. Also, the structure and reactivity of the pentacoordinate intermediate II are discussed in relation to various current models.  相似文献   

18.
Syntheses of the Analgesic 2-[1-(m-Methoxyphenyl)-2-cyclohexen-1-yl] -N,N-dimethyl-ethylamine Three principal routes to 2-[1-(m-methoxyphenyl)-2-cyclohexen-1-yl]- N,N-dimethyl-ethylamine (13) , a compound with interesting analgesic properties, are described. In the first, derivatives of [1-(m-methoxyphenyl)-2-cyclohexen-1-yl]acetic acid (10) (alternatively the ethyl ester 29 , the dimethylamide 32 or the nitrile 34 ) serve as crucial intermediates. All three can be synthesized from 2-(m-methoxyphenyl)cyclohexanone (1) by sequences comprising successively C-alkylation ( 1→2,4,5; Scheme 1), reduction of the ketone carbonyl group ( 2→6;4→18;5→19; Scheme 1 and 2) and elimination ( 16→29; 18→32; 19→34; Scheme 2). The relative configuration of the cyclohexanols 16, 18, 19 and of a series of related compounds is established by chemical correlation with the lactone 30 the structure of which follows from 1H-NMR. data (Scheme 2). The second route creates the intermediates 29 and 32 by ester- or amide-enolate-Claisen-type-rearrangement reactions starting from 3-(m-methoxyphenyl)-2-cyclohexen-1-ol ( 39; Scheme 3). Compounds 29, 32 and 34 are transformed into the target molecule 13 by standard reactions. A Hofmann elimination of the quaternary ammonium fluoride 50 (X=F), derived from the known cis-perhydroindoline 48 , is the essential step in the third approach to 13 (Scheme 4).  相似文献   

19.
Formation of Methyl 5,6-Dihydro-l, 3(4H)-thiazine-4-carboxyiates from 4-Allyl-l, 3-thiazol-5(4H)-ones . The reaction of N-[1-(N, N-dimethylthiocarbamoyl)-1-methyl-3-butenyl]benzamid ( 1 ) with HCl or TsOH in MeCN or toluene yields a mixture of 4-allyl-4-methyl-2-phenyl-1,3-thiazol-5(4H)-one ( 5a ) and allyl 4-methyl-2-phenyl-1,3-thiazol-2-yl sulfide ( 11 ; Scheme 3). Most probably, the corresponding 1,3-oxazol-5(4H)-thiones B are intermediates in this reaction. With HCl in MeOH, 1 is transformed into methyl 5,6-dihydro-4,6-dimethyl-2-phenyl-1,3(4H)-thiazine-4-carboxylate ( 12a ). The same product 12a is formed on treatment of the 1,3-thiazol-5(4H)-one 5a with HCl in MeOH (Scheme 4). It is shown that the latter reaction type is common for 4-allyl-substituted 1,3-thiazol-5(4H)-ones.  相似文献   

20.
A 1:1 mixture of the racemic trans- and cis-1-p-menthene-3,8-diols ((±)- 3 and (±)- 4 , resp.) was readily prepared in 3 steps starting from 3-methyl-2-cyclohexen-1-one. The relative configuration of the diols, purified via the corresponding cyclocarbonates, was assigned by 1H-NMR spectroscopy and found to be at variance with tentative claims in the literature. Optically active samples of 3 and 4 were prepared by resolution of the racemates with (R)-1-phenylethylamine. The absolute configuration of the resulting diols was determined by chemical correlation with standards of known absolute configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号