首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
The unimolecular dissociation reactions of doubly charged ions were reported,which resulted from a tandem mass spectrometer and a reversed geometry double focusing mass spectrometer by electron impact.Mass analyzed ion kinetic energy spectrometry(MIKES) was used to obtain the kinetic energy releases in charge separation reactions of doubly charged ions.The intercharge distances between the two charges at transition states can be calculated from the kinetic energy releases.Transition structures of unimolecular dissociation reactions were infered from MIKES and MS/MS.  相似文献   

2.
利用质量分析离子动能谱和碰撞诱导解离技采研究了邻、间、对二甲苯分子在电子轰击质谱中产生的双电荷离子[C8H10]2+、[C8H9]2+和单电荷离子[C8H10]+。根据测定的电荷分离反应的释放动能T和由此估算的双电荷离子电荷分离反应过渡态两电荷间距R,推测出过渡态的结构,利用单电荷离子[C8H10]+的MIKES/CID谱可区分邻二甲苯与间、对二甲苯异构体.  相似文献   

3.
借助质量分析离子动能谱和串联质谱研究了由电子轰击产生的双电荷离子的单分子亚稳碎裂及碰撞诱导分解过程,讨论了两种实验方法导致的差别因素.此外,根据质量分析离子动能谱提供的双电荷离子电荷分离反应的动能释放值计算了两电荷中心间距的最小值,以判别按不同电荷分离方式碎裂的双电荷离子的过渡态结构.  相似文献   

4.
双电荷离子[C_(12)H_(12)N_2O]~(2+)和[C_(12)H_(12)N_2S]~(2+)的气相单分子分解反应研究任达,贾维平,李智立,刘淑莹(中国科学院长春应用化学研究所,长春,130022)关键词双电荷离子,质量分析离子动能谱,串联质谱,4...  相似文献   

5.
自顶向下(Top-down)质谱分析方法是将完整蛋白质离子碎片化,从而在分子水平上提供更加精准、丰富的与蛋白质结构相关的生物学信息.该文首次将3μm红外激光与210 nm紫外激光共同引入到傅里叶变换离子回旋共振质谱仪(FT-ICR MS)的分析池中,获得了牛泛素蛋白离子的自顶向下质谱.通过优化两束激光被引入的时间序列,...  相似文献   

6.
陈辉  何美玉  杜大明  傅滨 《中国化学》2005,23(6):720-724
The electron impact mass spectra of ten new C2-symmetric chiral bis(oxazoline) and bis(thiazoline) have been studied. Bis(thiazoline) and bis(oxazoline) possess the same fragmentation mechanism under EI conditions. An unusual fragmentation pathway has been found in the compounds studied. Due to the presence of phenyl group, compounds 6 and 10 undergo a new fragmentation pathway except for the common way as the other eight compounds.Mass analyzed ion kinetic energy spectra experiments and high resolution accurate mass measurement were conducted to confirm the proposed fragmentation pathways.  相似文献   

7.
Mass spectrometry (MS) is the most versatile and comprehensive method in “OMICS” sciences (i.e. in proteomics, genomics, metabolomics and lipidomics). The applications of MS and tandem MS (MS/MS or MSn) provide sequence information of the full complement of biological samples in order to understand the importance of the sequences on their precise and specific functions. Nowadays, the control of polymer sequences and their accurate characterization is one of the significant challenges of current polymer science. Therefore, a similar approach can be very beneficial for characterizing and understanding the complex structures of synthetic macromolecules. MS-based strategies allow a relatively precise examination of polymeric structures (e.g. their molar mass distributions, monomer units, side chain substituents, end-group functionalities, and copolymer compositions). Moreover, tandem MS offer accurate structural information from intricate macromolecular structures; however, it produces vast amount of data to interpret. In “OMICS” sciences, the software application to interpret the obtained data has developed satisfyingly (e.g. in proteomics), because it is not possible to handle the amount of data acquired via (tandem) MS studies on the biological samples manually. It can be expected that special software tools will improve the interpretation of (tandem) MS output from the investigations of synthetic polymers as well. Eventually, the MS/MS field will also open up for polymer scientists who are not MS-specialists. In this review, we dissect the overall framework of the MS and MS/MS analysis of synthetic polymers into its key components. We discuss the fundamentals of polymer analyses as well as recent advances in the areas of tandem mass spectrometry, software developments, and the overall future perspectives on the way to polymer sequencing, one of the last Holy Grail in polymer science.  相似文献   

8.
Many proteins contain iron as metal ion either within their own structures or bound to their active sites. These iron-containing proteins are involved in numerous biological processes and some of them serve as biomarkers of clinical pathologies, not only related to iron homeostasis but also to other physiological disorders. Thus, a variety of analytical strategies have been developed over the last years in order to conduct studies on Fe-containing proteins. Among them, mass spectrometric (MS) methods still remain as preferred tools since they provide the capabilities of structure elucidation together with quantitative possibilities. Therefore, in this work we have tried to summarize the most recent applications of elemental and molecular mass spectrometric-based methods for the characterization (mostly qualitative but quantitative in some cases) of the high abundant Fe-containing proteins used for clinical diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号