首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An implicit, upwind arithmetic scheme that is efficient for the solution of laminar, steady, incompressible, two-dimensional flow fields in a generalised co-ordinate system is presented in this paper. The developed algorithm is based on the extended flux-vector-splitting (FVS) method for solving incompressible flow fields. As in the case of compressible flows, the FVS method consists of the decomposition of the convective fluxes into positive and negative parts that transmit information from the upstream and downstream flow field respectively. The extension of this method to the solution of incompressible flows is achieved by the method of artificial compressibility, whereby an artificial time derivative of the pressure is added to the continuity equation. In this way the incompressible equations take on a hyperbolic character with pseudopressure waves propagating with finite speed. In such problems the ‘information’ inside the field is transmitted along its characteristic curves. In this sense, we can use upwind schemes to represent the finite volume scheme of the problem's governing equations. For the representation of the problem variables at the cell faces, upwind schemes up to third order of accuracy are used, while for the development of a time-iterative procedure a first-order-accurate Euler backward-time difference scheme is used and a second-order central differencing for the shear stresses is presented. The discretized Navier–Stokes equations are solved by an implicit unfactored method using Newton iterations and Gauss–Siedel relaxation. To validate the derived arithmetical results against experimental data and other numerical solutions, various laminar flows with known behaviour from the literature are examined. © 1997 John Wiley & Sons, Ltd.  相似文献   

2.
The influence of artificial dissipation schemes on the accuracy and stability of the numerical solution of compressible flow is extensively examined. Using an implicit central difference factored scheme, an improved form of artificial dissipation is introduced which highly reduces the errors due to numerical viscosity. A function of the local Mach number is used to scale the amount of numerical damping added into the solution according to the character of the flow in several flow regimes. The resulting scheme is validated through several inviscid flow test cases.  相似文献   

3.
This paper describes one application of the approximate factorization technique to the solution of incompressible steady viscous flow problems in two dimensions. The velocity-pressure formulation of the Navier-Stokes equations written in curvilinear non-orthogonal co-ordinates is adopted. The continuity equation is replaced with one equation for the pressure by means of the artificial compressibility concept to obtain a system parabolic in time. The resulting equations are discretized in space with centred finite differences, and the steady state solution obtained by a time-marching ADI method requiring to solve 3 x 3 block tridiagonal linear systems. An optimized fourth-order artificial dissipation is introduced to damp the numerical instabilities of the artificial compressibility equation and ensure convergence. The resulting solver is applied to the prediction of a wide variety of internal flows, including both streamlined boundaries and sharp corners, and fast convergence and good results obtained for all the configurations investigated.  相似文献   

4.
In this paper, a fully third-order accurate projection method for solving the incompressible Navier-Stokes equations is proposed. To construct the scheme, a continuous projection procedure is firstly presented. We then derive a sufficient condition for the continuous projection equations to be temporally third-order accurate approximations of the original Navier-Stokes equations by means of the local- truncation-error-analysis technique. The continuous projection equations are discretized temporally and spatially to third-order accuracy on the staggered grids, resulting in a fully third-order discrete projection scheme. The possibility to design higher-order projection methods is thus demonstrated in the present paper. A heuristic stability analysis is performed on this projection method showing the probability of its being stable. The stability of the present scheme is further verified through numerical tests. The third-order accuracy of the present projection method is validated by several numerical test cases. The project supported by the China NKBRSF (2001CB409604) The English text was polished by Yunming Chen  相似文献   

5.
A study is reported on the possibility of improving the speed of convergence of existing numerical programmes for the simulation of flow in combustion chambers by applying the multigrid method to the pressure correction phase only. A version of the multigrid algorithm is introduced for this purpose which achieves a 1:10 residual reduction in a single V(1, 1) cycle. The overall decrease in computation time with respect to an industry-standard SIMPLE algorithm with single-grid pressure correction ranges from four to five times for SIMPLE itself and several other well-known algorithms to six times for a newly developed pressure correction strategy we call difference operator triangularization (DOT).  相似文献   

6.
We introduce a Eulerian/Lagrangian model to compute the evolution of a spray of water droplets inside a complex geometry. To take into account the complex geometry we define a rectangular mesh and we relate each mesh node to a node function which depends on the location of the node. The time-dependent incompressible and turbulent Navier-Stokes equations are solved using a projection method. The droplets are regarded as individual entities and we use a Lagrangian approach to compute the evolution of the spray. We establish the exchange laws related to mass and heat transfer for a droplet by introducing a mass transfer coefficient and a heat transfer coefficient. The numerical results from our model are compared with those from the literature in the case of a falling droplet in the atmosphere and from experimental investigation in a wind tunnel in the case of a polydisperse spray. The comparison is fairly good. We present the computation of a water droplet spray inside a complex and realistic geometry and determine the characteristics of the spray in the vicinity of obstacles.  相似文献   

7.
We solve by a finite difference method a system of simultaneous non-linear partial differential equations which modelizes the transfer of heat and mass when a fluid evaporates from the hot wall and condenses on the cold wall of an upright rectangular cavity. The need to verify a certain condition associating the physical parameters of the fluid for the existence of steady state solutions is proved.  相似文献   

8.
We give an analytic solution at the 10th order of approximation for the steady-state laminar viscous flows past a sphere in a uniform stream governed by the exact, fully non-linear Navier-Stokes equations. A new kind of analytic technique, namely the homotopy analysis method, is applied, by means of which Whitehead's paradox can be easily avoided and reasonably explained. Different from all previous perturbation approximations, our analytic approximations are valid in the whole field of flow, because we use the same approximations to express the flows near and far from the sphere. Our drag coefficient formula at the 10th order of approximation agrees better with experimental data in a region of Reynolds number Rd<30, which is considerably larger than that (Rd<5) of all previous theoretical ones.  相似文献   

9.
In this paper we propose a new method for obtaining the exact solutions of the Mavier-Stokes (NS) equations for incompressible viscous fluid in the light of the theory of simplified Navier-Stokes (SNS) equations developed by the first author[1,2], Using the present method we can find some new exact solutions as well as the well-known exact solutions of the NS equations. In illustration of its applications, we give a variety of exact solutions of incompressible viscous fluid flows for which NS equations of fluid motion are written in Cartesian coordinates, or in cylindrical polar coordinates, or in spherical coordinates. The project supported by National Natural Science Foundation of China.  相似文献   

10.
The numerical solution of the flow in a stepped channel constricted to half its width has been obtained for Reynolds numbers up to 2000 using Newton's iteration to solve the ensuing algebraic system. In order to avoid high-frequency errors, a locally fine grid is effected near the corner by transformation of the independent variables. The results predict a downstream recirculation region, observed in experiments but not found in earlier numerical calculations. The inclusion of the Dennis–Hudson upwinding, added for stability in SOR methods, whilst giving the same characteristics of the flow, is less accurate by at least an order of magnitude.  相似文献   

11.
This paper presents an efficient numerical method for solving the unsteady Euler equations on stationary rectilinear grids. Boundary conditions on the surface of an airfoil are implemented by using their first-order expansions on the mean chord line. The method is not restricted to flows with small disturbances since there are no restrictions on the mean angle of attack of the airfoil. The mathematical formulation and the numerical implementation of the wall boundary conditions in a fully implicit time-accurate finite-volume Euler scheme are described. Unsteady transonic flows about an oscillating NACA 0012 airfoil are calculated. Computational results compare well with Euler solutions by the full boundary conditions on a body-fitted curvilinear grid and published experimental data. This study establishes the feasibility for computing unsteady fluid-structure interaction problems, where the use of a stationary rectilinear grid offers substantial advantages in saving computer time and program design since it does not require the generation and implementation of time-dependent body-fitted grids.  相似文献   

12.
AUNIFORMLYVALIDASYMPTOTICSOLUTIONOFTHENAVIER-STOKESEQUATIONSQinSheng-li(秦圣立)ZhangAi-shu(张爱淑)(Dept.OfPhysics,QufuTeachersUnive...  相似文献   

13.
运用DSMC(Direct Simulation Monte—Carlo)方法从分子运动论层次对大膨胀比、喉部转角为尖角的微喷管流动现象进行模拟,考察来流总压对喷管性能的影响,并与Navier—Stokes方程运算结果、实验结果进行比较。研究表明:在模拟微型喷管的流动现象时,DSMC方法比N—S方程更加适用。  相似文献   

14.
Buoyant flow is analysed for a vertical fluid saturated porous layer bounded by an isothermal plane and an isoflux plane in the case of a fully developed flow with a parallel velocity field. The effects of viscous dissipation and pressure work are taken into account in the framework of the Oberbeck–Boussinesq approximation scheme and of the Darcy flow model. Momentum and energy balances are combined in a dimensionless nonlinear ordinary differential equation solved numerically by a Runge–Kutta method. Both cases of upward pressure force (upward driven flows) and of downward pressure force (downward driven flows) are examined. The thermal behaviour for upward driven flows and downward driven flows is quite different. For upward driven flows, the combined effects of viscous dissipation and pressure work may produce a net cooling of the fluid even in the case of a positive heat input from the isoflux wall. For downward driven flows, viscous dissipation and pressure work yield a net heating of the fluid. A general reflection on the roles played by the effects of viscous dissipation and pressure work with respect to the Oberbeck–Boussinesq approximation is proposed.  相似文献   

15.
Two-dimensional external viscous flows are numerically approximated by means of a domain decomposition method which combines a vortex method and a finite difference method. The vortex method is used in the flow region which is dominated by convective effects, whereas the finite difference method is used in the flow region where viscous diffusion effects are dominant. An influence matrix technique combined with the uniformity condition of the pressure is used to enforce the tangential velocity boundary condition. Comparisons between numerical and experimental data show that the method is well adapted for simulating two-dimensional flows.  相似文献   

16.
轻载径向滑动轴承中Taylor涡动的产生和影响研究   总被引:2,自引:0,他引:2  
本文用原始变量法直接求解了三维的N-S方程,计算分析了高速旋转有限长圆柱轴承中油膜层流失稳产生涡动的临界Taylor数及流场、压力场和摩擦阻力。轴承端部泄油量等的变化。结果表明,在有限长同心圆柱轴承中,随着轴旋转速度的提高,轴承磨擦阻力线性增大,油膜层流失稳出现的涡动增加轴承摩擦阻力并减少轴承端部泄油量,油膜层流失稳后,轴承长度方向均匀地排列着一些流体涡,涡动的强度从轴承中间截面向轴承端部逐渐减弱  相似文献   

17.
The conditions of onset and the character of the oscillations developing behind a circular cylinder located above a plane wall (screen) in a flow with a velocity profile of the boundary layer type are studied numerically. The dependence of the critical Reynolds number (at which a steady flow regime in the wake behind the cylinder is replaced by an oscillatory regime) on the cylinder-wall gap and the free-stream boundary layer thickness is found.  相似文献   

18.
Two steady-state models of magma flow in a conduit are considered, with and without allowance for magma compressibility. As distinct from studies [{xc1}–{xc6}], in which either simplified equations were solved or unrealistic values of the parameters were used, in the present study the complete systems of equations are solved and the values of the parameters correspond to magma flow in a volcanic conduit. The secondary flows obtained in [{xc5}] for model conditions are not formed when the magma is simulated by an incompressible fluid and all the terms of the equations are taken into account. When the magma compressibility is taken into account, in the isothermal case and for constant magma viscosity the entire flow is adequately described by the one-dimensional isothermalmodel, although this approach is not formally applicable.  相似文献   

19.
Velocity varies rapidly near sheared boundaries. Therefore in many practical fluid problems it can be inefficient to solve discrete equations with velocity as the dependent variable. Conversely, shear stress varies slowly near sheared boundaries, suggesting that it may be well suited for use as the dependent variable in discrete equations. This paper describes a formulation of the internal mode equations for a three-dimensional hydrodynamic model using shear stress as the dependent variable. The resulting direct stress solution (DSS), coupled with a spatial discretization using linear finite elements, yields a system matrix that can be set up and solved with the efficiency of a banded matrix with bandwidth 8. If the eddy viscosity distribution is assumed to be piecewise linear over the depth (with an arbitrary number of time-varying segments), the recovery of velocity from stress can be easily accomplished in closed form, thereby avoiding any difficulty resulting from the logarithmic singularity in the velocity profile that occurs at a boundary. Results from tidal and wind-driven test cases with realistic boundary layers are used to demonstrate the accuracy and computational advantages of a DSS formulation versus a standard velocity-based formulation.  相似文献   

20.
A new method for wetting and drying in two‐dimensional shallow water flow models is proposed. The method is closely related to the artificial porosity method used by different authors in Boussinesq‐type models, but is further extended for use in a semi‐implicit (ADI‐type) time integration scheme. The method is implemented in the simulation model WAQUA using general boundary fitted coordinates and is applied to realistic schematization for a portion of the river Meuse in the Netherlands. A large advantage of the artificial porosity method over traditionally used methods on the basis of ‘screens’ is a strongly reduced sensitivity of model results. Instead of blocking all water transport in grid points where the water level becomes small, as in screen‐based methods, the flow is gradually closed off. Small changes in parameters such as the initial conditions or bottom topography therefore no longer lead to large changes in the model results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号