首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent developments of two mid-infrared tunable laser spectrometers dedicated to carbon isotope ratio determination are presented. First, a field deployable quantum cascade laser-based sensor is described, along with line selection strategy for (13/12)CO(2) ratio measurements. Secondly, an instrument architecture based on difference frequency generation is presented. The analyses of fundamental limitations, specifically temperature and pressure stability, and water vapor collision broadening, are detailed.  相似文献   

2.
Recent developments of two mid-infrared tunable laser spectrometers dedicated to carbon isotope ratio determination are presented. First, a field deployable quantum cascade laser-based sensor is described, along with line selection strategy for 13/12CO2 ratio measurements. Secondly, an instrument architecture based on difference frequency generation is presented. The analyses of fundamental limitations, specifically temperature and pressure stability, and water vapor collision broadening, are detailed.  相似文献   

3.
We propose a new tunable laser source concept for multiple-wavelength interferometry, offering an unprecedented large choice of synthetic wavelengths with a relative uncertainty better than 10(-11) in vacuum. Two lasers are frequency stabilized over a wide range of frequency intervals defined by the frequency comb generated by a mode-locked fiber laser. In addition, we present experimental results demonstrating the generation of a 90 mum synthetic wavelength calibrated with an accuracy better than 0.2 parts in 10(6). With this synthetic wavelength we can resolve one optical wavelength, which opens the way to absolute distance measurement with nanometer accuracy.  相似文献   

4.
The use of colloidal material offers an interesting alternative to top down approaches for the realization of low cost infrared detectors. We demonstrate photoconduction in thin films of a colloidal material in the mid-infrared (up to 7 μm), using HgTe colloidal quantum dots. Thin films of the colloidal quantum dots have a large absorption coefficient (>104 cm−1), and the photoconductive response is dramatically improved by encapsulating the nanoparticle into an inorganic matrix of As2S3. Such devices show fast response and large detectivity (>1010 jones) at temperatures above 200 K.  相似文献   

5.
An analytic model is proposed for an optical gas sensor based on diode optopairs, which takes into account the line spectral structure of gases being analyzed, as well as peculiarities of spectral characteristics of immersion-type light-emitting diodes and photodiodes operating in the mid-IR spectral range. The model makes it possible to calculate the transfer characteristic of the sensor and to estimate the measurement error for gas analyzers operating on the basis of these sensors. The experiments demonstrate bright prospects of application of sensors based on immersion-type diode optopairs in small-size gas analyzers; the expected values of the threshold sensitivity of a CO2 sensor at a level of 10 ppm and the absolute error of measurements below 0.1% (reduced error is 1%) in a range of up to 10 vol % at a speed of up to 10 counts per second exceed the parameters of available portable CO2 gas analyzers. The validity of the model is confirmed by conformity between the calculated data and the experimental results obtained on a prototype of a CO2 diode sensor.  相似文献   

6.
The design and modeling of a quantum cascade optical amplifier (QCOA) using intra-cavity non-linear interactions to achieve wavelength conversion is proposed. The model is based on the nonlinear equation coupled with Maxwell wave equations for different emission modes. In the proposed structure, four wave mixing (FWM) output exhibits a peak as a function of pump and probe frequency if they are tuned to the energy levels of the QC structure subbands. Results demonstrate that the FWM output signal power significantly depends on how subbands are engineered and interact with optical pulses which propagate in multi layer medium. In addition, we show that by adjusting pump and probe signal frequencies, FWM output power can be tuned.  相似文献   

7.
8.
Tellurium and sulfur doped GaSe for mid-IR applications   总被引:1,自引:0,他引:1  
Centimeter-sized Te:GaSe (??10?mass%) ingots have been grown by the vertical Bridgman technique and studied to reveal the potentials for phase matching and frequency conversion. Less than 5 mass% Te-doped crystals show the hexagonal structure like ??-GaSe. Te:GaSe (??2?mass%) crystals were suitable for non-linear applications. The optimal Te-doping level between 0.1 and 0.5 mass% has been clearly observed in CO2 laser SHG experiment. The CO2 laser SHG efficiency in Te:GaSe (0.1?C0.5 mass%) is ??20?% higher than that of GaSe due to better optical quality. Phase matching conditions in Te-doped crystals have been shown to be identical with those of GaSe.  相似文献   

9.
We present a characterization of some processes affecting the performance of solid state array cameras designed for ground based astronomical imaging in the 8–13m atmospheric window. Our discussion includes a novel model for electron-hole generationrecombination noise based on the probable pathlength of an electron in a photoconductor. We use the Berkeley mid-IR Array Camera as an example. For this camera, the results show that the total optical system composed of the camera, a 3m telescope, and the atmosphere has an efficiency of about 3%, a 1 noise equivalent flux density of 25 mJy min–1/2arcsec–2 measured over a /=10% band width, and a noise equivalent expressed as the ambient temperature thermal black body noise of 23%.  相似文献   

10.
It is often enough to localize environmental sources of noise from different directions in a plane. This can be accomplished with a circular microphone array, which can be designed to have practically the same resolution over 360°. The microphones can be suspended in free space or they can be mounted on a solid cylinder. This investigation examines and compares two techniques based on such arrays, the classical delay-and-sum beamforming and an alternative method called circular harmonics beamforming. The latter is based on decomposing the sound field into a series of circular harmonics. The performance of the two signal processing techniques is examined using computer simulations, and the results are validated experimentally.  相似文献   

11.
We present a simple analysis and comparison between the theoretical and experimental results, in an erbium-doped optical fiber operating in the superluminescent regime. Experimental results for different pumping power levels and fiber length shows, that the theoretical results given for the numerical model could render useful information for predicting parameters such as total output power. These types of sources could have direct application in wavelength multiplexed arrangements of fiber sensors, fiber gyroscopes or in general, in any sensors in which a broad wavelength and stable light source is required.  相似文献   

12.
A wavelength-tunable mid-infrared (mid-IR) laser is used to make time-resolved absorption measurements of methyl-cyclohexane (MCH) and n-dodecane vapor concentration, demonstrating the use of this novel laser source for sensing hydrocarbon fuels. Two sensitive and species-specific diagnostic strategies are investigated: (1) direct absorption at a fixed wavelength, and (2) dual-wavelength differential absorption with two rapidly-alternating wavelengths. The tunable laser light is produced using difference frequency generation by combining two near-infrared diode lasers in a periodically poled lithium niobate crystal, providing a continuous-wave (cw), room temperature mid-IR source with the low intensity noise, and rapid wavelength tunability typical of telecommunications diode lasers. Direct absorption measurements of MCH with a wavelength of 3413.7 nm demonstrate fast time response (1 μs) and low noise in cell (300-675 K) and shock tube (650-1450 K) experiments. The detection limits of MCH range from 0.5 ppm-m at 300 K to 11 ppm-m at 1440 K (pressure = 101 kPa). Next, time-division multiplexing is used to alternately generate two mid-IR wavelengths at 20 kHz, enabling the use of dual-wavelength differential absorption to eliminate interference absorption. Measurements of MCH concentration are first made in a cell, with varying amounts of n-heptane interference absorption. Accurate values of MCH concentration are obtained for n-heptane/MCH ratios as high as 15, demonstrating the utility of this sensor for species-specific hydrocarbon detection in systems with interfering absorption. Finally, time-resolved n-dodecane vapor concentration measurements are made in a shock-heated evaporating aerosol. The dual-wavelength differential absorption diagnostic is sensitive only to the vapor concentration, rejecting droplet extinction. These measurements illustrate the power of the differential absorption strategy for sensitive vapor-phase detection in the presence of particle scattering. The tunability of this new source will allow these concepts to be extended to other hydrocarbon fuels.  相似文献   

13.
14.
An efficient hybrid mid-IR laser system comprising a thulium fibre laser, Ho:YAG solid state laser and a zinc germanium phosphide optical parametric oscillator is presented. A 790 nm diode pumped 1908 nm thulium fibre laser operating at 30 W pumps an RTP q-switched Ho:YAG laser emitting 17 W at 40 kHz and 2090 nm. The zinc germanium phosphide optical parametric oscillator efficiently converts this into the 3-5 μm region producing 10.1 W with 59% optical conversion efficiency and an M2 = 1.5.  相似文献   

15.
A key element in drill steering and prediction of lithology ahead-of-the-bit is the transmission of while-drilling information from the bottom of the well to the rig operator and the geophysicists. Mud-pulse telemetry, based on pressure pulses along the drilling mud and extensional waves through the drill string, is the most used technique. The last method, properly designed, could transmit data rates up to 100 bits per second, against the 1 or 2 bits per second achieved with pressure pulses. In this work, a time-domain algorithm is developed for the propagation of one-dimensional axial, torsional, and flexural stress waves, including transducer sources and sensors. In addition, the equations include relaxation mechanisms simulating the viscoelastic behavior of the steel, dielectric losses, and any other losses, such as those produced by the presence of the drilling mud, the casing, and the formation. Moreover, the algorithm simulates the passbands and stopbands due to the presence of the coupling joints and pulse distortion and delay due to nonuniform cross-section areas. Acoustic and electric pulses, generated at one location in the string, can be propagated and detected at any other location by piezoelectric and acoustic sensors, such as PCB accelerometers, clamp-on ammeters, force, and strain transducers.  相似文献   

16.
A computer controlled tunable mid-IR light source, based on single resonant difference frequency generation (DFG), is experimentally investigated. The DFG process is pumped by an external cavity tapered diode laser, tunable over a spectral range of 30 nm. Grating feedback to the single mode channel of the tapered diode narrows the spectrum and allows for tuning of the emitted spectrum in the range from 780 to 810 nm. The DFG process takes place intra-cavity in a high finesse diode pumped 1064 nm solid state Nd:YVO4 laser cavity, using periodically poled LiNbO3 as the nonlinear material. Based on this new approach, a tunable single-frequency output power exceeding 3 mW was obtained in the mid-IR tuning range from 2.9 to 3.4 ??m.  相似文献   

17.
We present an experiment where mid-infrared radiation is detected indirectly via the second-order non-linear process of sum frequency generation. The mid-infrared sources used for the experiment are quantum cascade lasers, and we use a pump wavelength that yields an up-converted wavelength within the detection window of Silicon avalanche photo diodes. Compared with direct detection using state-of-the-art mid-infrared semiconductor detectors, the detection scheme we propose in this paper has the advantages of greater bandwidth and lower noise equivalent power.  相似文献   

18.
Tsay C  Toor F  Gmachl CF  Arnold CB 《Optics letters》2010,35(20):3324-3326
We demonstrate on-chip hybrid integration of chalcogenide glass waveguides and quantum cascade lasers (QCLs). Integration is achieved using an additive solution-casting and molding method to directly form As(2)S(3) strip waveguides on an existing QCL chip. Integrated As(2)S(3) strip waveguides constructed in this manner display strong optical confinement and guiding around 90° bends, with a NA of 0.24 and bend loss of 12.9dB at a 1mm radius (λ=4.8μm).  相似文献   

19.
A two-wavelength mid-IR laser is used for time-resolved absorption-based measurements of temperature and n-heptane concentration in shock-heated gases. The novel difference-frequency-generation laser provides tunable mid-IR light from nonlinear conversion of near-IR light, enabling access to the strong hydrocarbon absorption bands between 3.3 and 3.5 μm associated with the CH stretching vibration. This laser was modified to alternate between two mid-IR wavelengths at 200 kHz, providing 5 μs time resolution for simultaneous monitoring of temperature and concentration in reactive flows and combustion systems. Temperature-dependent absorption spectra of n-heptane are first measured in a cell from 298 to 773 K using an FTIR spectrometer. These spectra are used to select candidate pairs of wavelengths with good sensitivity to temperature and concentration and to provide accurate temperature-dependent absorption cross-sections at the selected wavelengths. Laser absorption measurements of shock-heated n-heptane are then used to extend the cross-section data to 1300 K and to investigate the sensor accuracy and noise characteristics. The temperature and concentration inferred from the measurements are compared to known post-shock conditions, with a 4.5% RMS deviation from the calculated temperature and 1.7% RMS deviation from the calculated concentration. Finally, at high temperatures, the sensor is used to monitor decomposition of n-heptane, illustrating the potential of this diagnostic for hydrocarbon kinetics experiments in shock tubes. This new sensor concept should prove useful for simultaneous, time-resolved temperature and hydrocarbon concentration measurements in a variety of combustion and propulsion applications.  相似文献   

20.
Third generation sensors are under development to enhance capabilities for target detection and identification, threat warning, and 3D imaging. Distinct programs for both cooled HgCdTe and uncooled microbolometer devices are part of this thrust. This paper will describe the technology for HgCdle two-colour, high-definition imaging sensors and threat warning devices, avalanche photodiode arrays for 3D imaging, and the supporting technology being developed to enhance the readouts that support these devices. Uncooled detector initiatives will also be described to reduce pixel size in conjunction with the production of 480×640 arrays. Finally, efforts are also beginning to move both photon and thermal detectors closer to radiative-limited performance while simultaneously reducing the cooling requirements for photon detectors. The paper presented there appears in Infrared Photoelectronics, edited by Antoni Rogalski, Eustace L. Dereniak, Fiodor F. Sizov, Proc. SPIE Vol. 5957, 59571Z (2005).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号