首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let $\mathbb{K }$ be a field of characteristic zero. We describe an algorithm which requires a homogeneous polynomial $F$ of degree three in $\mathbb{K }[x_{0},x_1,x_{2},x_{3}]$ and a zero ${\mathbf{a }}$ of $F$ in $\mathbb{P }^{3}_{\mathbb{K }}$ and ensures a linear Pfaffian representation of $\text{ V}(F)$ with entries in $\mathbb{K }[x_{0},x_{1},x_{2},x_{3}]$ , under mild assumptions on $F$ and ${\mathbf{a }}$ . We use this result to give an explicit construction of (and to prove the existence of) a linear Pfaffian representation of $\text{ V}(F)$ , with entries in $\mathbb{K }^{\prime }[x_{0},x_{1},x_{2},x_{3}]$ , being $\mathbb{K }^{\prime }$ an algebraic extension of $\mathbb{K }$ of degree at most six. An explicit example of such a construction is given.  相似文献   

2.
Let ${\mathfrak{a}}$ be an ideal of a commutative Noetherian ring R and M a finitely generated R-module. It is shown that ${{\rm Ann}_R(H_{\mathfrak{a}}^{{\rm dim} M}(M))= {\rm Ann}_R(M/T_R(\mathfrak{a}, M))}$ , where ${T_R(\mathfrak{a}, M)}$ is the largest submodule of M such that ${{\rm cd}(\mathfrak{a}, T_R(\mathfrak{a}, M)) < {\rm cd}(\mathfrak{a}, M)}$ . Several applications of this result are given. Among other things, it is shown that there exists an ideal ${\mathfrak{b}}$ of R such that ${{\rm Ann}_R(H_{\mathfrak{a}}^{{\rm dim} M}(M))={\rm Ann}_R(M/H_{\mathfrak{b}}^{0}(M))}$ . Using this, we show that if ${ H_{\mathfrak{a}}^{{\rm dim} R}(R)=0}$ , then ${{{\rm Att}_R} H^{{\rm dim} R-1}_{\mathfrak a}(R)= \{\mathfrak{p} \in {\rm Spec} R | \,{\rm cd}(\mathfrak{a}, R/\mathfrak{p}) = {\rm dim} R-1\}.}$ These generalize the main results of Bahmanpour et al. (see [2, Theorem 2.6]), Hellus (see [7, Theorem 2.3]), and Lynch (see [10, Theorem 2.4]).  相似文献   

3.
We consider the randomly weighted sums $ \sum\nolimits_{k = 1}^n {{\theta_k}{X_k},n \geqslant 1} $ , where $ \left\{ {{X_k},1 \leqslant k \leqslant n} \right\} $ are n real-valued random variables with subexponential distributions, and $ \left\{ {{\theta_k},1 \leqslant k \leqslant n} \right\} $ are other n random variables independent of $ \left\{ {{X_k},1 \leqslant k \leqslant n} \right\} $ and satisfying $ a \leqslant \theta \leqslant b $ for some $ 0 < a \leqslant b < \infty $ and all $ 1 \leqslant k \leqslant n $ . For $ \left\{ {{X_k},1 \leqslant k \leqslant n} \right\} $ satisfying some dependent structures, we prove that $$ {\text{P}}\left( {\mathop {{\max }}\limits_{1 \leqslant m \leqslant n} \sum\limits_{k = 1}^m {{\theta_k}{X_k} > x} } \right)\sim {\text{P}}\left( {\sum\limits_{k = 1}^m {{\theta_k}{X_k} > x} } \right)\sim {\text{P}}\left( {\mathop {{\max }}\limits_{1 \leqslant k \leqslant n} {\theta_k}{X_k} > x} \right)\sim \sum\limits_{k = 1}^m {{\text{P}}\left( {{\theta_k}{X_k} > x} \right)} $$ as x??????.  相似文献   

4.
Given three mutually tangent circles with bends (related to the reciprocal of the radius) a, b and c respectively, an important quantity associated with the triple is the value ${\langle a,b,c \rangle:=ab+ac+bc}$ . In this note we show in the case when a central circle with bend b 0 is “surrounded” by four circles, i.e., a flower with four petals, with bends b 1, b 2, b 3,b 4 that either $$\sqrt{\langle b_{0},b_{1},b_{2} \rangle}+\sqrt{\langle b_{0},b_{3},b_{4} \rangle}=\sqrt{\langle b_{0},b_{2},b_{3} \rangle}+\sqrt{\langle b_{0},b_{4},b_{1} \rangle}$$ or $$\sqrt{\langle b_{0},b_{1},b_{2} \rangle}=\sqrt{\langle b_{0},b_{2},b_{3} \rangle}+\sqrt{\langle b_{0},b_{3},b_{4} \rangle}+\sqrt{\langle b_{0},b_{4},b_{1} \rangle}$$ (where ${\langle b_{0},b_{1},b_{2} \rangle}$ is chosen to be maximal). As an application we give a sufficient condition for the alternating sum of the ${\sqrt{\langle a,b,c\rangle}}$ of a packing in standard position to be 0. (A packing is in standard position when we have two circles with bend 0, i.e., parallel lines, and the remaining circles are packed in between.)  相似文献   

5.
Let f be a conformal map from the 2-disk into ${\mathbb{R}^n}$ . We prove that the image f(B) have a normal tangent vector basis (e 1, e 2) with ${\|d(e_{1}, e_{2})\|_{L^2(B)} \leq C\|A\|_{L^2(B)}}$ when the total Gauss curvature ${\int_B |K_{f}| d\mu_f < 2\pi}$ .  相似文献   

6.
We elaborate Weiermann-style phase transitions for well-partial-orderings (wpo) determined by iterated finite sequences under Higman-Friedman style embedding with Gordeev’s symmetric gap condition. For every d-times iterated wpo ${\left({\rm S}\text{\textsc{eq}}^{d}, \trianglelefteq _{d}\right)}$ in question, d >? 1, we fix a natural extension of Peano Arithmetic, ${T \supseteq \sf{PA}}$ , that proves the corresponding second-order sentence ${\sf{WPO}\left({\rm S}{\textsc{eq}}^{d}, \trianglelefteq _{d}\right) }$ . Having this we consider the following parametrized first-order slow well-partial-ordering sentence ${\sf{SWP}\left({\rm S}\text{\textsc{eq}}^{d}, \trianglelefteq _{d}, r\right):}$ $$\left( \forall K > 0 \right) \left( \exists M > 0\right) \left( \forall x_{0},\ldots ,x_{M}\in {\rm S}\text{\textsc{eq}}^{d}\right)$$ $$\left( \left( \forall i\leq M\right) \left( \left| x_{i}\right| < K + r \left\lceil \log _{d} \left( i+1\right) \right\rceil \right)\rightarrow \left( \exists i < j \leq M \right) \left(x_{i} \trianglelefteq _{d} x_{j}\right) \right)$$ for a natural additive Seq d -norm |·| and r ranging over EFA-provably computable positive reals, where EFA is an abbreviation for 0?+?exp. We show that the following basic phase transition clauses hold with respect to ${T = \Pi_{1}^{0}\sf{CA}_{ < \varphi ^{_{\left( d-1\right) }} \left(0\right) }}$ and the threshold point1.
  1. If r <? 1 then ${\sf{SWP}\left({\rm S}\text{\textsc{eq}}^{d}, \trianglelefteq _{d},r \right) }$ is provable in T.
  1. If ${r > 1}$ then ${\sf{SWP}\left({\rm S}\text{\textsc{eq}}^{d}, \trianglelefteq _{d},r \right) }$ is not provable in T.
Moreover, by the well-known proof theoretic equivalences we can just as well replace T by PA or ACA 0 and ${\Delta _{1}^{1}\sf{CA}}$ , if d =? 2 and d =? 3, respectively.In the limit case d → ∞ we replaceEFA-provably computable reals r by EFA-provably computable functions ${f: \mathbb{N} \rightarrow \mathbb{R}_{+}}$ and prove analogous theorems. (In the sequel we denote by ${\mathbb{R}_{+}}$ the set of EFA-provably computable positive reals). In the basic case T?=? PA we strengthen the basic phase transition result by adding the following static threshold clause
  1. ${\sf{SWP}\left({\rm S}\text{\textsc{eq}}^{2}, \trianglelefteq _{2}, 1\right)}$ is still provable in T = PA (actually in EFA).
Furthermore we prove the following dynamic threshold clauses which, loosely speaking are obtained by replacing the static threshold t by slowly growing functions 1 α given by ${1_{\alpha }\left( i\right)\,{:=}\,1+\frac{1}{H_{\alpha }^{-1}\left(i\right) }, H_{\alpha}}$ being the familiar fast growing Hardy function and ${H_{\alpha }^{-1}\left( i\right)\,{:=}\,\rm min \left\{ j \mid H_{\alpha } \left ( j\right) \geq i \right\}}$ the corresponding slowly growing inversion.
  1. If ${\alpha < \varepsilon _{0}}$ , then ${\sf{SWP}\left({\rm S}\text{\textsc{eq}}^{2}, \trianglelefteq _{2}, 1_{\alpha}\right)}$ is provable in T = PA.
  1. ${\sf{SWP}\left( {\rm S}\text{\textsc{eq}}^{2}, \trianglelefteq _{2},1_{\varepsilon _{0}}\right)}$ is not provable in T = PA.
We conjecture that this pattern is characteristic for all ${T\supseteq \sf{PA}}$ under consideration and their proof-theoretical ordinals o (T ), instead of ${\varepsilon _{0}}$ .  相似文献   

7.
We consider the system ${-\Delta{u}_{j} + a(x)u_{j} = \mu_{j}u^{3}_{j} + \beta \sum_{k \neq j} u^{2}_{k}u_{j}}$ , u j > 0, j = 1, . . . , n, on a possibly unbounded domain ${\Omega \subset \mathbb{R}^{N}, N \leq 3}$ , with Dirichlet boundary conditions. The system appears in nonlinear optics and in the analysis of mixtures of Bose–Einstein condensates. We consider the self-focussing (attractive self-interaction) case ${\mu_{1}, \ldots, \mu_{n} > 0}$ and take ${\beta \in \mathbb{R}}$ as bifurcation parameter. There exists a branch of positive solutions with uj/uk being constant for all ${j, k \in \{1, \ldots, n\}}$ . The main results are concerned with the bifurcation of solutions from this branch. Using a hidden symmetry we are able to prove global bifurcation even when the linearization has even-dimensional kernel (which is always the case when n > 1 is odd).  相似文献   

8.
For C*-algebras A and B, the operator space projective tensor product ${A\widehat{\otimes}B}$ and the Banach space projective tensor product ${A\otimes_{\gamma}B}$ are shown to be symmetric. We also show that ${A\widehat{\otimes}B}$ is a weakly Wiener algebra. Finally, quasi-centrality and the unitary group of ${A\widehat{\otimes}B}$ are discussed.  相似文献   

9.
We consider the pseudo-euclidean space ${(\mathbb{R}^n, g)}$ , with n ≥  3 and ${g_{ij} = \delta_{ij} \varepsilon_i, \varepsilon_i = \pm 1}$ and tensors of the form ${T = \sum \nolimits_i \varepsilon_i f_i (x) dx_i^2}$ . In this paper, we obtain necessary and sufficient conditions for a diagonal tensor to admit a metric ${\bar{g}}$ , conformal to g, so that ${A_{\bar g}=T}$ , where ${A_{\bar g}}$ is the Schouten Tensor of the metric ${\bar g}$ . The solution to this problem is given explicitly for special cases for the tensor T, including a case where the metric ${\bar g}$ is complete on ${\mathbb{R}^n}$ . Similar problems are considered for locally conformally flat manifolds. As an application of these results we consider the problem of finding metrics ${\bar g}$ , conformal to g, such that ${\sigma_2 ({\bar g })}$ or ${\frac{\sigma_2 ({\bar g })}{\sigma_1 ({\bar g })}}$ is equal to a given function. We prove that for some functions, f 1 and f 2, there exist complete metrics ${\bar{g} = g/{\varphi^2}}$ , such that ${\sigma_2 ({\bar g }) = f_1}$ or ${\frac{\sigma_2 ({\bar g })}{\sigma_1 ({\bar g })} = f_2}$ .  相似文献   

10.
For a nonnegative integer α, we study and compute the root functions ${R_{\alpha}^{I}(z, w) = (1-\overline{w}z)^{2+\alpha}K_{\alpha}^{I}(z, w)}$ of finite zero based invariant subspaces I of the weighted Bergman space ${A_{\alpha}^{2}}$ , where ${K_{\alpha}^{I}}$ is the reproducing kernel of I. Furthermore, we estimate ranks of the corresponding root operators.  相似文献   

11.
We consider the semilinear electromagnetic Schrödinger equation ${(-i{\nabla} + \mathcal{A}(x))^{2}u + V (x)u = |u|^{{2}^{\ast}-2}u, u\, {\in}\, D_{\mathcal{A},0}^{1,2}{(\Omega,\mathbb{C})}}$ , where ${\Omega = (\mathbb{R}^{m}\;{\backslash}\;\{0\}) {\times} {\mathbb{R}^{N-m}}}$ with 2 ≤ m ≤  N, N ≥ 3, 2* : = 2N/(N – 2) is the critical Sobolev exponent, V is a Hardy term and ${\mathcal{A}}$ is a singular magnetic potential of a particular form which includes the Aharonov– Bohm potentials. Under some symmetry assumptions on ${\mathcal{A}}$ we obtain multiplicity of solutions satisfying certain symmetry properties.  相似文献   

12.
Let ${\Omega\subset\mathbb{R}^n}$ be open and bounded. For 1 ≤ p < ∞ and 0 ≤ λ < n, we give a characterization of Young measures generated by sequences of functions ${\{{\bf f}_j\}_{j=1}^\infty}$ uniformly bounded in the Morrey space ${L^{p,\lambda}(\Omega;\mathbb{R}^N)}$ with ${\{\left|{{\bf f}_j}\right|^p\}_{j=1}^\infty}$ equiintegrable. We then treat the case that each f j = ? u j for some ${{\bf u}_j\in W^{1,p}(\Omega;\mathbb{R}^N)}$ . As an application of our results, we consider the functional $${\bf u} \mapsto \int\limits_{\Omega}f({\bf x}, {\bf u}({\bf x}), {\bf {\nabla}}{\bf u}({\bf x})){\rm d}{\bf x},$$ and provide conditions that guarantee the existence of a minimizing sequence with gradients uniformly bounded in ${L^{p,\lambda}(\Omega;\mathbb{R}^{N\times n})}$ .  相似文献   

13.
14.
An edge colored graph is called a rainbow if no two of its edges have the same color. Let ? and $\mathcal{G}$ be two families of graphs. Denote by $RM({\mathcal{H}},\mathcal{G})$ the smallest integer R, if it exists, having the property that every coloring of the edges of K R by an arbitrary number of colors implies that either there is a monochromatic subgraph of K R that is isomorphic to a graph in ? or there is a rainbow subgraph of K R that is isomorphic to a graph in $\mathcal{G}$ . ${\mathcal{T}}_{n}$ is the set of all trees on n vertices. ${\mathcal{T}}_{n}(k)$ denotes all trees on n vertices with diam(T n (k))≤k. In this paper, we investigate $RM({\mathcal{T}}_{n},4K_{2})$ , $RM({\mathcal{T}}_{n},K_{1,4})$ and $RM({\mathcal{T}}_{n}(4),K_{3})$ .  相似文献   

15.
We derive a representation of the isomorphic spaces ${\mathcal{O}_{C}}$ of very slowly increasing functions and ${\mathcal{O}_{M}'}$ of very rapidly decreasing distributions as a completed topological tensor product of sequence spaces. In order to describe this completed topological tensor product as a space of double sequences, we construct a representation as an inductive limit of vector valued sequence spaces. Moreover we compare the representations of ${\mathcal{O}_{C}}$ and ${\mathcal{O}_{M}}$ .  相似文献   

16.
The functional equation $$f(x_{1},y_{1})f(x_{2},y_{2})=f(x_{1}x_{2}+\alpha y_{1}y_{2},x_{1}y_{2}+x_{2}y_{1}),\ (x_{1},y_{1}),\,(x_{2},y_{2})\in \mathbb{ R}^{2}$$ arises from the formula for the product of two numbers in the quadratic field ${\mathbb{Q}(\sqrt{\alpha})}$ . The general solution ${f:\mathbb{R}\rightarrow \mathbb{R}}$ to this equation is determined. Moreover, it is shown that no more general equations arise from a change of basis in the field.  相似文献   

17.
We study the problem $$ \left\{\begin{array}{ll} {-\varepsilon^{2}\mathcal{M}^+_{\lambda,\Lambda}(D^{2}u) = f (x, u)} \quad\; {\rm in} \; \Omega,\\ {u = 0} \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad {\rm on} \; \partial{\Omega}, \end{array} \right.$$ where Ω is a smooth bounded domain in ${\mathbb{R}^{N},N > 2,}$ and show it possesses nontrivial solutions for small values of ε provided f is a nonnegative continuous function which has a positive zero. The multiplicity result is based on degree theory together with a new Liouville type theorem for ${-{M}^+_{\lambda,\Lambda}(D^{2}u) = f(u)}$ in ${\mathbb{R}^{N}}$ for nonnegative nonlinearities with zeros.  相似文献   

18.
19.
In this paper we give criteria for a finite group to belong to a formation. As applications, recent theorems of Li, Shen, Shi and Qian are generalized. Let G  be a finite group, $\cal F$ a formation and p  a prime. Let $D_{\mathcal {F}}(G)$ be the intersection of the normalizers of the $\cal F$ -residuals of all subgroups of G, and let $D_{\mathcal {F}}^{p}(G)$ be the intersection of the normalizers of $(H^{\cal F}O_{p'}(G))$ for all subgroups H of G. We then define $D_{\mathcal F}^{0}(G)=D_{\mathcal F, p}^{~0}(G)=1$ and $D_{\mathcal F}^{i+1}(G)/D_{\mathcal F}^{i}(G)=D_{\mathcal F}(G/D_{\mathcal F}^{i}(G))$ , $D_{\mathcal F, p}^{i+1}(G)/D_{\mathcal F, p}^{~i}(G)=D_{\mathcal F, p}(G/D_{\mathcal F, p}^{~i}(G))$ . Let $D_{\mathcal {F}}^{\infty}(G)$ and $D_{\mathcal {F}, p}^{~\infty}(G)$ denote the terminal member of the ascending series of $D_{\mathcal F}^{i}(G)$ and $D_{\mathcal F, p}^{~i}(G)$ respectively. In this paper we prove that under certain hypotheses, the the $\cal F$ -residual $G^{\cal F}$ is nilpotent (respectively,p-nilpotent) if and only if $G=D_{\mathcal {F}}^{\infty}(G)$ (respectively, $G=D_{\mathcal {F}, p}^{~\infty}(G)$ ). Further more, if the formation $\cal F$ is either the class of all nilpotent groups or the class of all abelian groups, then $G^{\cal F}$ is p-nilpotent if and only if and only if every cyclic subgroup of G order p and 4 (if p?=?2) is contained in $D_{\mathcal {F}, p}^{~\infty}(G)$ .  相似文献   

20.
In the paper, (Abbassi and Kowalski, Ann Glob Anal Geom, 38: 11–20, 2010) the authors study Einstein Riemannian $g$ natural metrics on unit tangent sphere bundles. In this study, we equip the unit tangent sphere bundle $T_1 M$ of a Riemannian manifold $(M,g)$ with an arbitrary Riemannian $g$ natural metric $\tilde{G}$ and we show that if the geodesic flow $\tilde{\xi }$ is the potential vector field of a Ricci soliton $(\tilde{G},\tilde{\xi },\lambda )$ on $T_1M,$ then $(T_1M,\tilde{G})$ is Einstein. Moreover, we show that the Reeb vector field of a contact metric manifold is an infinitesimal harmonic transformation if and only if it is Killing. Thus, we consider a natural contact metric structure $(\tilde{G}, \tilde{\eta }, \tilde{\varphi }, \tilde{\xi })$ over $T_1 M$ and we show that the geodesic flow $\tilde{\xi }$ is an infinitesimal harmonic transformation if and only if the structure $(\tilde{G}, \tilde{\eta }, \tilde{\varphi },\tilde{\xi })$ is Sasaki $\eta $ -Einstein. Consequently, we get that $(\tilde{G},\tilde{\xi }, \lambda )$ is a Ricci soliton if and only if the structure $(\tilde{G}, \tilde{\eta }, \tilde{\varphi }, \tilde{\xi })$ is Sasaki-Einstein with $\lambda = 2(n-1) >0.$ This last result gives new examples of Sasaki–Einstein structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号