首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem of minimizing the functional (A) $${}_a\smallint ^b \varphi (x,y,y',y'')dx$$ under the conditions (B) $$y(a) = a_0 ,y'(a) = a_1 ,y(b) = b_0 ,y'(b) = b_1$$ is replaced by the problem of finding the vector (y1,y2,...,yn?1) on which the sum (C) $$\sum\limits_{\kappa = 0}^n {C_\kappa \varphi (x_\kappa ,y_\kappa ,\left. {\frac{{y_{\kappa + 1} - y_\kappa }}{h},\frac{{y_{\kappa + 1} - 2y_\kappa + y_{\kappa + 1} )}}{{h^2 }}} \right)}$$ takes a minimal value. Under certain conditions on ? andC k it is proved that a solution exists for the difference scheme constructed. The method of differentiation with respect to a parameter is used for the proof.  相似文献   

2.
The functional equation $$f(x_{1},y_{1})f(x_{2},y_{2})=f(x_{1}x_{2}+\alpha y_{1}y_{2},x_{1}y_{2}+x_{2}y_{1}),\ (x_{1},y_{1}),\,(x_{2},y_{2})\in \mathbb{ R}^{2}$$ arises from the formula for the product of two numbers in the quadratic field ${\mathbb{Q}(\sqrt{\alpha})}$ . The general solution ${f:\mathbb{R}\rightarrow \mathbb{R}}$ to this equation is determined. Moreover, it is shown that no more general equations arise from a change of basis in the field.  相似文献   

3.
пУсть жАДАНы Ужлы $$ - \infty< x_1< x_2< ...< x_k< x_{k + 1}< ...< x_n< + \infty ,$$ , И пУстьx 1 * <x 2 * <...<x n-1 * — кОРНИ МНОгО ЧлЕНА Ω′(х). гДЕ $$\omega (x) = \prod\limits_{k = 1}^n {(x - x_k ).} $$ В РАБОтЕ ИсслЕДУЕтсь жАДАЧА: кАк ОпРЕДЕлИт ь МНОгОЧлЕНР(х) МИНИМАльНОИ стЕп ЕНИ, Дль кОтОРОгО ВыпОлНь Утсь слЕДУУЩИЕ ИНтЕР пОльцИОННыЕ УслОВИь гДЕ {y k И {y k′}-жАДАННы Е сИстЕМы жНАЧЕНИИ.  相似文献   

4.
In this paper, we investigate the Hyers–Ulam stability of the following quartic equation $$\begin{array}{ll} {\sum\limits^{n}_{k=2}}\left({\sum\limits^{k}_{i_{1}=2}}{\sum\limits^{k+1}_{i_{2}=i_{1}+1}} \ldots {\sum\limits^{n}_{i_{n-k+1}=i_{n-k}+1}}\right)\\ \quad\times f \left({\sum\limits^{n}_{i=1,i \neq i_{1},\ldots,i_{n-k+1}}} x_{i}-{\sum\limits^{n-k+1}_{r=1}}x_{i_{r}}\right) + f \left({\sum\limits^{n}_{i=1}}x_{i}\right)\\ \quad-2^{n-2}{\sum\limits^{}_{1 \leq{i} \leq{j} \leq{n}}}(f(x_{i} + x_{j}){+f(x_{i} - x_{j})){+2^{n-5}(n - 2){\sum\limits^{n}_{i=1}}f(2x_{i})}} = \theta \end{array} $$ $({n \in \mathbb{N}, n \geq 3})$ in β-homogeneous F-spaces.  相似文献   

5.
LetQ(x,y,z) be an indefinite ternary quadratic form of type (2,1) and determinantD(<0). Let 0≤t≤1/3 and \(f(t) = \frac{4}{{(1 + t)^2 (1 + 5t)}}\) . Then given any real numbersx 0,y 0,z 0 there exist integersx,y,z satisfying $$ - t(f(t)|D|)^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}}< Q (x + x_0 ,y + y_0 ,z + z_0 ) \leqslant (f(t)|D|)^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} $$ All the cases when equality holds are also obtained.  相似文献   

6.
LetG be a simple graph and let $\bar G$ denotes its complement. We say thatG is integral if its spectrum consists entirely of integers. If $\overline {\alpha K_a \cup \beta K_b } $ is integral we show that it belongs to the class of integral graphs $$\overline {[\frac{{kt}}{\tau }x_o + \frac{{mt}}{\tau }z]K(t + \ell n)k + \ell m \cup [\frac{{kt}}{\tau }y_o + \frac{{(t + \ell n)k + \ell m}}{\tau }z]nK\ell m,} $$ where (i) t, k, l, m, n ∈ ? such that (m, n) =1, (n, t) =1 and (l, t)=1; (ii) τ=((t+ln)k+lm, mt) such that τ| kt; (iii) (x0, y0) is aparticular solution of the linear Diophantine equation ((t+ln)k+lm)x-(mt)y=τ and (iv) z≥z0 where z0 is the least integer such that $(\frac{{kt}}{\tau }x_0 + \frac{{mt}}{\tau }z_0 ) \geqslant 1$ and $(\frac{{kt}}{\tau }y_0 + \frac{{(t + \ell n)k + \ell m}}{\tau }z_0 ) \geqslant 1$ .  相似文献   

7.
Biagio Ricceri 《Positivity》2012,16(3):455-470
In this paper, we point out a very flexible scheme within which a strict minimax inequality occurs. We then show the fruitfulness of this approach presenting a series of various consequences. Here is one of them: Let Y be a finite-dimensional real Hilbert space, J : Y ?? R a C 1 function with locally Lipschitzian derivative, and ${\varphi : Y \to [0, + \infty[}$ a C 1 convex function with locally Lipschitzian derivative at 0 and ${\varphi^{-1}(0) = \{0\}}$ . Then, for each ${x_0 \in Y}$ for which J??(x 0)??? 0, there exists ???> 0 such that, for each ${r \in ]0, \delta[}$ , the restriction of J to B(x 0, r) has a unique global minimum u r which satisfies $$J(u_r)\leq J(x)-\varphi(x-u_r)$$ for all ${x \in B(x_0, r)}$ , where ${B(x_0, r) = \{x \in Y : \|x-x_0\|\leq{r}\}.}$   相似文献   

8.
It is well known how the Kostant-Rowen Theorem extends the validity of the famous Amitsur-Levitzki identity to skew-symmetric matrices. Here we give a general method, based on a graph theoretic approach, for deriving extensions of known permanental-type identities to skew-symmetric and symmetric matrices over a commutative ring of prime characteristic. Our main result has a typical Kostant-Rowen flavour: IfM≥p[n+1/2] then $C_M (X,Y) = \sum\limits_{\alpha ,\beta \in Sym(M)} {x_{\alpha (1)} y_{\beta (1)} x_{\alpha (2)} y_{\beta (2)} } ...x_{\alpha (M)} y_{\beta (M)} = 0$ is an identity onM n ? (Ω), the set ofnxn skew-symmetric matrices over a commutative ring Ω withp1Ω=0 (provided that $P > \sqrt {[n + 1/2)} $ ). Otherwise, the stronger conditionM≥pn implies thatC M(X,Y)=0 is an identity on the full matrix ringM n(Ω).  相似文献   

9.
Пустьl 1 иl 2 — неотрицательные убывающие функции на (0, ∞). Допустим, что $$\int\limits_0^\infty {S^{n_i - 1} l_i (S)\left( {1 + \log + \frac{1}{{S^{n_i } l_i (S)}}} \right)dS}< \infty ,$$ , гдеn 1 иn 2 — натуральные числа. Тогда для каждой функции \(f \in L^1 (R^{n_1 + n_2 } )\) при почти всех (x0, у0) мы имеем $$\mathop {\lim }\limits_{\lambda \to \infty } \lambda ^{n_1 + n_2 } \int\limits_{R^{n_1 } } {\int\limits_{R^{n_2 } } {l_1 } } (\lambda |x|)l_2 (\lambda |y|)f(x_0 - x,y_0 - y)dx dy = f(x_0 ,y_0 )\int\limits_{R^{n_1 } } {\int\limits_{R^{n_2 } } {l_i (|x|)l_2 } } (|y|)dx dy.$$   相似文献   

10.
The inverse problem about two-spectra for the equation (1) $$\begin{gathered} b_0 y_0 + a_0 y_1 = \lambda y_0 , \hfill \\ a_{n - 1} y_{n - 1} + b_n y_n + a_n y_{n + 1} = \lambda y_n \left( {n = 1, 2, 3, ...} \right), \hfill \\ \end{gathered} $$ where {yn} 0 is the desired solution, λ is a complex parameter and $$a_n > 0, \operatorname{Im} b_n = 0 \left( {n = 0, 1 ,2, ...} \right)$$ is studied. Necessary and sufficient conditions for the solvability of the inverse problem about two-spectrafor Eq. (1) are established and also the procedure of reconstruction of the equation from its two-spectra is indicated.  相似文献   

11.
Let E be a real reflexive strictly convex Banach space which has uniformly Gâteaux differentiable norm. Let ${\mathcal{S} = \{T(s): 0 \leq s < \infty\}}$ be a nonexpansive semigroup on E such that ${Fix(\mathcal{S}) := \cap_{t\geq 0}Fix( T(t) ) \not= \emptyset}$ , and f is a contraction on E with coefficient 0 <  α <  1. Let F be δ-strongly accretive and λ-strictly pseudo-contractive with δ + λ >  1 and ${0 < \gamma < \min\left\{\frac{\delta}{\alpha}, \frac{1-\sqrt{ \frac{1-\delta}{\lambda} }}{\alpha} \right\} }$ . When the sequences of real numbers {α n } and {t n } satisfy some appropriate conditions, the three iterative processes given as follows : $${\left.\begin{array}{ll}{x_{n+1} = \alpha_n \gamma f(x_n) + (I - \alpha_n F)T(t_n)x_n,\quad n\geq 0,}\\ {y_{n+1} = \alpha_n \gamma f(T(t_n)y_n) + (I - \alpha_n F)T(t_n)y_n,\quad n\geq 0,}\end{array}\right.}$$ and $$ z_{n+1} = T(t_n)( \alpha_n \gamma f(z_n) + (I - \alpha_n F)z_n),\quad n\geq 0 $$ converge strongly to ${\tilde{x}}$ , where ${\tilde{x}}$ is the unique solution in ${Fix(\mathcal{S})}$ of the variational inequality $${ \langle (F - \gamma f)\tilde {x}, j(x - \tilde{x}) \rangle \geq 0,\quad x\in Fix(\mathcal{S}).}$$ Our results extend and improve corresponding ones of Li et al. (Nonlinear Anal 70:3065–3071, 2009) and Chen and He (Appl Math Lett 20:751–757, 2007) and many others.  相似文献   

12.
In this paper a sufficient condition is obtained for the global asymptotic stability of the following system of difference equations $$x_{n + 1} = \frac{{x_n y_{n - 1}^b + 1}} {{x_n + y_{n - 1}^b }}, y_{n + 1} = \frac{{y_n x_{n - 1}^b + 1}} {{y_n + x_{n - 1}^b }}n = 0,1,2 \ldots$$ where the parameter b ∈ [0, ∞) and the initial values (x k , y k ) ∈ (0, ∞) (for k = ?1, 0).  相似文献   

13.
A problem of Carlitz and its generalizations   总被引:1,自引:0,他引:1  
Let ${\mathbb{F}_q}$ be the finite field of characteristic p > 2 with q elements. Carlitz proposed the problem of finding an explicit formula for the number of solutions to the equation $$(x_1+ x_2+\cdots+x_n)^2=a\, x_1x_2\cdots x_n,$$ where ${a\in \mathbb{F}_q^*}$ and n ≥ 3. By using the augmented degree matrix and Gauss sums, we consider the generalizations of the above equation and partially solve Carlitz’s problem. Moreover, the technique developed in this paper may be applied to other equations of the form ${h_1^\lambda=h_2}$ with ${h_1, h_2 \in \mathbb{F}_q[x_1,\ldots,x_n]}$ and ${\lambda \in \mathbb{N}}$ .  相似文献   

14.
Let ${\mathbb K} $ denote a field. Let it d denote a nonnegative integer and consider a sequence p=( $\theta_i, \theta^*_i,i=0...d; \varphi_j, \phi_j,j=1...{\it d})$ consisting of scalars taken from ${\mathbb K} $ . We call p a parameter array whenever: (PA1) $\theta_i \not=\theta_j, \; \theta^*_i\not=\theta^*_j$ if $$i\not=j$, $(0 \leq i, j\leq d)$; (PA2) $ \varphi_i\not=0$, $\phi_i\not=0$ $(1 \leq i \leq d)$; (PA3) $\varphi_i = \phi_1 \sum_{h=0}^{i-1} ({\theta_h-\theta_{d-h}})/({\theta_0-\theta_d}) + (\theta^*_i-\theta^*_0)(\theta_{i-1}-\theta_d)$ $(1 \leq i \leq d)$; (PA4) $\phi_i = \varphi_1 \sum_{h=0}^{i-1} ({\theta_h-\theta_{d-h}})/({\theta_0-\theta_d}) + (\theta^*_i-\theta^*_0)(\theta_{d-i+1}-\theta_0)$ $(1 \leq i \leq d)$; (PA5) $(\theta_{i-2}-\theta_{i+1})(\theta_{i-1}-\theta_i)^{-1}$, $(\theta^*_{i-2}-\theta^*_{i+1})(\theta^*_{i-1}-\theta^*_i)^{-1}$$ are equal and independent of i for $2 \leq i \leq d-1$ . In Terwilliger, J. Terwilliger, Linear Algebra Appl., Vol. 330(2001) p. 155 we showed the parameter arrays are in bijection with the isomorphism classes of Leonard systems. Using this bijection we obtain the following two characterizations of parameter arrays. Assume p satisfies PA1 and PA2. Let A, B,A^*, B^* denote the matrices in ${Mat}_{{\it d}+1}$ ( ${\mathbb K} $ ) which have entries A ii i , B ii d-i , A * ii * i , B * ii * i (0 ≤ id), A i,i-1=1, B i,i-1=1, A * i-1,i i , B * i-1,i =? i (1 ≤ id), and all other entries 0. We show the following are equivalent: (i) p satisfies PA3–PA5; (ii) there exists an invertible GMat d+1( ${\mathbb K} $ ) such that G ?1 AG=B and G ?1 A * G=B *; (iii) for 0 ≤ id the polynomial $$ \sum_{n=0}^i \frac{ (\lambda-\theta_0) (\lambda-\theta_1) \cdots (\lambda-\theta_{n-1}) (\theta^*_i-\theta^*_0) (\theta^*_i-\theta^*_1) \cdots (\theta^*_i-\theta^*_{n-1}) } {\varphi_1\varphi_2\cdots \varphi_n}$$ is a scalar multiple of the polynomial $$\sum_{n=0}^i \frac{ (\lambda-\theta_d) (\lambda-\theta_{d-1}) \cdots (\lambda-\theta_{d-n+1}) (\theta^*_i-\theta^*_0) (\theta^*_i-\theta^*_1) \cdots (\theta^*_i-\theta^*_{n-1}) } {\phi_1\phi_2\cdots \phi_n}.$$ We display all the parameter arrays in parametric form. For each array we compute the above polynomials. The resulting polynomials form a class consisting of the q-Racah, q-Hahn, dual q-Hahn, q-Krawtchouk, dual q-Krawtchouk, quantum q-Krawtchouk, affine q-Krawtchouk, Racah, Hahn, dual-Hahn, Krawtchouk, Bannai/Ito, and Orphan polynomials. The Bannai/Ito polynomials can be obtained from the q-Racah polynomials by letting q tend to ?1. The Orphan polynomials have maximal degree 3 and exist for ( ${\mathbb K} $ )=2 only. For each of the polynomials listed above we give the orthogonality, 3-term recurrence, and difference equation in terms of the parameter array.  相似文献   

15.
The paper contributes to understanding the differential structure in a C *-algebra. Refining the Banach $(D_p^*)$ -algebras investigated by Kissin and Shulman as noncommutative analogues of the algebra C p [a,b] of p-times continuously differentiable functions, we investigate a Frechet $(D_\infty^*)$ -subalgebra $\ensuremath{{\mathcal B}}$ of a C *-algebra as a noncommutative analogue of the algebra C ?∞?[a,b] of smooth functions. Regularity properties like spectral invariance, closure under functional calculi and domain invariance of homomorphisms are derived expressing $\ensuremath{{\mathcal B}}$ as an inverse limit over n of Banach $(D^*_n)$ -algebras. Several examples of such smooth algebras are exhibited.  相似文献   

16.
It is proved that the equation $$n = x_{\,1}^3 + x_{\,2}^3 + x_{\,3}^3 + x_{\,4}^3 + x_{\,5}^3 + x_{\,6}^3 + u^4 + v^9$$ has nonnegative integral solutions if $n \equiv 1\left( {\bmod 5} \right)$ is even and sufficiently large. Bibliography: 8 titles.  相似文献   

17.
In this paper we study eigenfunctions and fundamental solutions for the three parameter fractional Laplace operator \(\Delta _+^{(\alpha , \beta , \gamma )}:= D_{x_0^+}^{1+\alpha } +D_{y_0^+}^{1+\beta } +D_{z_0^+}^{1+\gamma },\) where \((\alpha , \beta , \gamma ) \in \,]0,1]^3\), and the fractional derivatives \(D_{x_0^+}^{1+\alpha }, D_{y_0^+}^{1+\beta }, D_{z_0^+}^{1+\gamma }\) are in the Riemann–Liouville sense. Applying operational techniques via two-dimensional Laplace transform we describe a complete family of eigenfunctions and fundamental solutions of the operator \(\Delta _+^{(\alpha ,\beta ,\gamma )}\) in classes of functions admitting a summable fractional derivative. Making use of the Mittag–Leffler function, a symbolic operational form of the solutions is presented. From the obtained family of fundamental solutions we deduce a family of fundamental solutions of the fractional Dirac operator, which factorizes the fractional Laplace operator. We apply also the method of separation of variables to obtain eigenfunctions and fundamental solutions.  相似文献   

18.
We consider a class of Kolmogorov equation $$Lu={\sum^{p_0}_{i,j=1}{\partial_{x_i}}(a_{ij}(z){\partial_{x_j}}u)}+{\sum^{N}_{i,j=1}b_{ij}x_{i}{\partial_{x_j}}u-{\partial_t}u}={\sum^{p_0}_{j=1}{\partial_{x_j}}F_{j}(z)}$$ in a bounded open domain ${\Omega \subset \mathbb{R}^{N+1}}$ , where the coefficients matrix (a ij (z)) is symmetric uniformly positive definite on ${\mathbb{R}^{p_0} (1 \leq p_0 < N)}$ . We obtain interior W 1,p (1 < p < ∞) regularity and Hölder continuity of weak solutions to the equation under the assumption that coefficients a ij (z) belong to the ${VMO_L\cap L^\infty}$ and ${({b_{ij}})_{N \times N}}$ is a constant matrix such that the frozen operator ${L_{z_0}}$ is hypoelliptic.  相似文献   

19.
Consider an ordered Banach space with a cone of positive elementsK and a norm ∥·∥. Let [a,b] denote an order-interval; under mild conditions, ifx*∈[a,b] then $$||x * - \tfrac{1}{2}(a + b)|| \leqslant \tfrac{1}{2}||b - a||.$$ This inequality is used to generate error bounds in norm, which provide on-line exit criteria, for iterations of the type $$x_r = Ax_{r - 1} + a,A = A^ + + A^ - ,$$ whereA + andA ? are bounded linear operators, withA + K ?K andA ? K ? ?K. Under certain conditions, the error bounds have the form $$\begin{gathered} ||x * - x_r || \leqslant ||y_r ||,y_r = (A^ + - A^ - )y_{r - 1} , \hfill \\ ||x * - x_r || \leqslant \alpha ||\nabla x_r ||, \hfill \\ ||x * - \tfrac{1}{2}(x_r + x_{r - 1} )|| \leqslant \tfrac{1}{2}||\nabla x_r ||. \hfill \\ \end{gathered} $$ These bounds can be used on iterative methods which result from proper splittings of rectangular matrices. Specific applications with respect to certain polyhedral cones are given to the classical Jacobi and Gauss-Seidel splittings.  相似文献   

20.
In this paper we consider the problem of the approximation of the integral of a smooth enough function f(x,y) on the standard simplex $\Delta _{2} \subset \mathbb{R}^{2}$ by cubature formulas of the following kind: $${\int\limits_{\Delta _{2} } {f{\left( {x,y} \right)}dxdy} } = {\sum\limits_{\alpha = 1}^3 {{\sum\limits_{i,j} {A_{{\alpha ij}} \frac{{\alpha ^{{i + j}} }}{{\alpha x^{i} \alpha y^{j} }}f{\left( {x_{\alpha } ,y_{\alpha } } \right)} + E{\left( f \right)}} }} }$$ where the nodes $\left( x_{\alpha},y_{\alpha}\right) ,\alpha=1,2,3$ are the vertices of the simplex. Such kind of quadratures belong to a more general class of formulas for numerical integration, which are called boundary-type quadrature formulas. We discuss three classes of such formulas that are exact for algebraic polynomials and generate embedded pairs. We give bounds for the truncation errors and conditions for convergence. Finally, we show how to organize an algorithm for the automatic computation of the quadratures with estimate of the errors and provide some numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号