首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In this paper, we propose a preconditioned general modulus-based matrix splitting iteration method for solving modulus equations arising from linear complementarity problems. Its convergence theory is proved when the system matrix is an H+-matrix, from which some new convergence conditions can be derived for the (general) modulus-based matrix splitting iteration methods. Numerical results further show that the proposed methods are superior to the existing methods.  相似文献   

2.
For the large sparse linear complementarity problem, a class of accelerated modulus-based matrix splitting iteration methods is established by reformulating it as a general implicit fixed-point equation, which covers the known modulus-based matrix splitting iteration methods. The convergence conditions are presented when the system matrix is either a positive definite matrix or an H +-matrix. Numerical experiments further show that the proposed methods are efficient and accelerate the convergence performance of the modulus-based matrix splitting iteration methods with less iteration steps and CPU time.  相似文献   

3.
In this paper, we present some comparison theorems on preconditioned iterative method for solving Z-matrices linear systems, Comparison results show that the rate of convergence of the Gauss–Seidel-type method is faster than the rate of convergence of the SOR-type iterative method.  相似文献   

4.
The alternating methods for solving the large system of linear equations Ax=b are investigated. The convergence and the monotone convergence theories for the alternating method are formulated when the coefficient matrix is an H-matrix or a monotone matrix. Sufficient conditions are established for the induced splitting by the alternating method to be a regular splitting. Furthermore, new comparison theorems which improve previous comparison theorems are proved and several concrete applications are given.  相似文献   

5.
In this paper, we study the splitting method and two-stage splitting method for the linear complementarity problems. Convergence results for these two methods are presented when the system matrix is an H-matrix and the splittings used are H-splitting. Numerical experiments show that the two-stage splitting method has the same or even better numerical performance than the splitting method in some aspects under certain conditions.  相似文献   

6.
In this paper, we study the convergence of two-stage multisplitting method using AOR or SSOR multisplittings as inner splittings and an outer splitting for solving a linear system whose coefficient matrix is an H-matrix. We also introduce an application of the two-stage multisplitting method.  相似文献   

7.
Bai has recently presented a modulus-based matrix splitting iteration method, which is a powerful alternative for solving the large sparse linear complementarity problems. In this paper, we further present a two-step modulus-based matrix splitting iteration method, which consists of a forward and a backward sweep. Its convergence theory is proved when the system matrix is an H  + -matrix. Moreover, for the two-step modulus-based relaxation iteration methods, more exact convergence domains are obtained without restriction on the Jacobi matrix associated with the system matrix, which improve the existing convergence theory. Numerical results show that the two-step modulus-based relaxation iteration methods are superior to the modulus-based relaxation iteration methods for solving the large sparse linear complementarity problems.  相似文献   

8.
For solving the large sparse linear complementarity problems, we establish modified modulus‐based matrix splitting iteration methods and present the convergence analysis when the system matrices are H+‐matrices. The optima of parameters involved under some scopes are also analyzed. Numerical results show that in computing efficiency, our new methods are superior to classical modulus‐based matrix splitting iteration methods under suitable conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, by applying the SSOR splitting, we propose two new iterative methods for solving the linear complementarity problem LCP (M,q). Convergence results for these two methods are presented when M is an H-matrix (and also an M-matrix). Finally, two numerical examples are given to show the efficiency of the presented methods.  相似文献   

10.
In this paper, we discuss convergence of the extrapolated iterative methods for solving singular linear systems. A general principle of extrapolation is presented. The semiconvergence of an extrapolated method induced by a regular splitting and a nonnegative splitting is proved whenever the coefficient matrix A is a singular M-matrix with ‘property c’ and an irreducible singular M-matrix, respectively. Since the (generalized, block) JOR and AOR methods are respectively the extrapolated methods of the (generalized, block) Jacobi and SOR methods, so the semiconvergence of the (generalized, block) JOR and AOR methods for solving general singular systems are proved. Furthermore, the semiconvergence of the extrapolated power method, the (block) JOR, AOR and SOR methods for solving Markov chains are discussed.  相似文献   

11.
Block H-splittings of block square matrices (which, in general, have complex entries) are examined. It is shown that block H-matrices are the only ones that admit this type of splittings. Iterative processes corresponding to these splittings are proved to be convergent. The concept of a simple splitting of a block matrix is introduced, and the convergence of iterative processes related to simple splittings of block H-matrices is investigated. Multisplitting and nonstationary iterative processes based on block H-splittings are considered. Sufficient conditions for their convergence are derived, and some estimates for the asymptotic convergence rate are given.  相似文献   

12.
Abstract

In this paper, the convergence conditions of the two-step modulus-based matrix splitting and synchronous multisplitting iteration methods for solving linear complementarity problems of H-matrices are weakened. The convergence domain given by the proposed theorems is larger than the existing ones.  相似文献   

13.
We introduce a splitting method for the semilinear Schrödinger equation and prove its convergence for those nonlinearities which can be handled by the classical well-posedness L2(Rd)-theory. More precisely, we prove that the scheme is of first order in the L2(Rd)-norm for H2(Rd)-initial data.  相似文献   

14.
For the large sparse linear complementarity problems, by reformulating them as implicit fixed‐point equations based on splittings of the system matrices, we establish a class of modulus‐based matrix splitting iteration methods and prove their convergence when the system matrices are positive‐definite matrices and H+‐matrices. These results naturally present convergence conditions for the symmetric positive‐definite matrices and the M‐matrices. Numerical results show that the modulus‐based relaxation methods are superior to the projected relaxation methods as well as the modified modulus method in computing efficiency. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we propose an interval version of the generalized accelerated overrelaxation methods, which we refer to as IGAOR, for solving the linear complementarity problems, LCP (M, q), and develop a class of multisplitting IGAOR methods which can be easily implemented in parallel. In addition, in regards to the H-matrix with positive diagonal elements, we prove the convergence of these algorithms and illustrate their efficiency through our numerical results.  相似文献   

16.
Recently, Lee et al. [Young-ju Lee, Jinbiao Wu, Jinchao Xu, Ludmil Zikatanov, On the convergence of iterative methods for semidefinite linear systems, SIAM J. Matrix Anal. Appl. 28 (2006) 634-641] introduce new criteria for the semi-convergence of general iterative methods for semidefinite linear systems based on matrix splitting. The new conditions generalize the classical notion of P-regularity introduced by Keller [H.B. Keller, On the solution of singular and semidefinite linear systems by iterations, SIAM J. Numer. Anal. 2 (1965) 281-290]. In view of their results, we consider here stipulations on a splitting A=M-N, which lead to fixed point systems such that, the iterative scheme converges to a weighted Moore-Penrose solution to the system Ax=b. Our results extend the result of Lee et al. to a more general case and we also show that it requires less restrictions on the splittings than Keller’s P-regularity condition to ensure the convergence of iterative scheme.  相似文献   

17.
In this paper, first we present a convergence theorem of the improved modified Gauss–Seidel iterative method, referred to as the IMGS method, for H‐matrices and compare the range of parameters αi with that of the parameter ω of the SOR iterative method. Then with a more general splitting, the convergence analysis of this method for an H‐matrix and its comparison matrix is given. The spectral radii of them are also compared. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
The Linear Complementarity Problem (LCP), with an H+?matrix coefficient, is solved by using the new “(Projected) Matrix Analogue of the AOR (MAAOR)” iterative method; this new method constitutes an extension of the “Generalized AOR (GAOR)” iterative method. In this work two sets of convergence intervals of the parameters involved are determined by the theories of “Perron-Frobenius” and of “Regular Splittings”. It is shown that the intervals in question are better than any similar convergence intervals found so far by similar iterative methods. A deeper analysis reveals that the “best” values of the parameters involved are those of the (projected) scalar Gauss-Seidel iterative method. A theoretical comparison of the “best” (projected) Gauss-Seidel and the “best” modulus-based splitting Gauss-Seidel method is in favor of the former method. A number of numerical examples support most of our theoretical findings.  相似文献   

19.
We extend the ideas of convergence and Cauchy condition of double sequences extended by a two valued measure (called ??-statistical convergence/Cauchy condition and convergence/Cauchy condition in ??-density, studied for real numbers in our recent paper [7]) to a very general structure like an asymmetric (quasi) metric space. In this context it should be noted that the above convergence ideas naturally extend the idea of statistical convergence of double sequences studied by Móricz [15] and Mursaleen and Edely [17]. We also apply the same methods to introduce, for the first time, certain ideas of divergence of double sequences in these abstract spaces. The asymmetry (or rather, absence of symmetry) of asymmetric metric spaces not only makes the whole treatment different from the real case [7] but at the same time, like [3], shows that symmetry is not essential for any result of [7] and in certain cases to get the results, we can replace symmetry by a genuinely asymmetric condition called (AMA).  相似文献   

20.
In view of the minimization of a nonsmooth nonconvex function f, we prove an abstract convergence result for descent methods satisfying a sufficient-decrease assumption, and allowing a relative error tolerance. Our result guarantees the convergence of bounded sequences, under the assumption that the function f satisfies the Kurdyka–?ojasiewicz inequality. This assumption allows to cover a wide range of problems, including nonsmooth semi-algebraic (or more generally tame) minimization. The specialization of our result to different kinds of structured problems provides several new convergence results for inexact versions of the gradient method, the proximal method, the forward–backward splitting algorithm, the gradient projection and some proximal regularization of the Gauss–Seidel method in a nonconvex setting. Our results are illustrated through feasibility problems, or iterative thresholding procedures for compressive sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号