首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of pH, concentration of sodium dodecyl sulfate (SDS), additives, and coatings of polymers on the inner wall of fused silica tubing on electrokinetic migration were investigated with SDS solutions. The increase in SDS concentrations caused a substantial increase of the electrophoretic velocity of the SDS micelle but little affected the electroosmotic velocity veo under a constant applied voltage. No significant change in veo was observed either when the pH of the solution was varied from 5.5 to 9 or when additives such as hydroxypropyl cellulose were employed. Compared with an uncoated tube, electroosmosis became stronger in a fused silica tube coated with methyl silicone but weaker in one coated with polyethylene glycol 20M.  相似文献   

2.
Li Y  Xiang R  Horváth C  Wilkins JA 《Electrophoresis》2004,25(4-5):545-553
A new kind of monolithic capillary column was prepared for capillary electrochromatography (CEC) with a positively charged polymer layer on the inner wall of a fused-silica capillary and a neutral monolithic packing as the bulk stationary phase. The fused-silica capillary was first silanized with 3-glycidoxypropyltrimethoxysilane (GPTMS). Polyethyleneimine (PEI) was then covalently bonded to the GPTMS coating to form an annular positively charged polymer layer for the generation of electroosmotic flow (EOF). A neutral bulk monolithic stationary phase was then prepared by in situ copolymerization of vinylbenzyl chloride (VBC) and ethylene glycol dimethacrylate in the presence of 1-propanol and formamide as porogens. Benzyl chloride functionalities on the monolith were subsequently hydrolyzed to benzyl alcohol groups. Effects of pH on the EOF mobility of the column were measured to monitor the completion of reactions. Using a column with this design, we expected general problems in CEC such as irreversible adsorption and electrostatic interaction between stationary phase and analytes to be reduced. A peptide mixture was successfully separated in counter-directional mode CEC. Comparison of peptide separations in isocratic monolithic CEC, gradient HPLC and capillary zone electrophoresis (CZE) indicated that the separation in CEC is governed by a dual mechanism that involves a complex interplay between selective chromatographic retention and differential electrophoretic migration.  相似文献   

3.
A surface modification has been developed which yields fused silica capillaries with switchable electroosmotic flow (anodal/cathodal). The capillary surface is a composite material consisting of unreacted silanol groups, a layer of positively charged quaternary ammonium functions, and a hydrophilic layer of long polyether chains. Because of the presence of positively and negatively charged groups, the net charge of the capillary surface can be varied from positive to negative by changing the pH of the running electrolyte, thus enabling manipulation of the magnitude and direction of the electroosmotic flow. The long polyether chains were effective in shielding biomacromolecules from the charged inner surface of the capillary, thus minimizing electrostatic interaction of the solutes with both unreacted silanols and the quaternary ammonium groups which had been introduced. As a consequence, high separation efficiencies were achieved with proteins, nucleotides, and a series of acidic oligosaccharides.  相似文献   

4.
G Azadi  A Tripathi 《Electrophoresis》2012,33(14):2094-2101
Control of EOF in microfluidic devices is essential in applications such as protein/DNA sizing and high‐throughput drug screening. With the growing popularity of poly(methyl methacrylate) (PMMA) as the substrate for polymeric‐based microfludics, it is important to understand the effect of surfactants on EOF in these devices. In this article, we present an extensive investigation exploring changes in EOF rate induced by SDS, polyoxyethylene lauryl ether (Brij35) and CTAB in PMMA microfluidic capillaries. In a standard protein buffer (Tris‐Glycine), PMMA capillaries exhibited a cathodic EOF with measured mobility of 1.54 ± 0.1 (× 10?4 cm2/V.s). In the presence of surfactant below a critical concentration, EOF was independent of surfactant concentration. At high concentrations of surfactants, the electroosmotic mobility was found to linearly increase/decrease as the logarithm of concentration before reaching a constant value. With SDS, the EOF increased by 257% (compared to buffer), while it was decreased by 238% with CTAB. In the case of Brij35, the electroosmotic mobility was reduced by 70%. In a binary surfactant system of SDS/CTAB and SDS/Brij35, addition of oppositely charged CTAB reduced the SDS‐induced EOF more effectively compared to nonionic Brij35. We propose possible mechanisms that explain the observed changes in EOF and zeta potential values. Use of neutral polymer coatings in combination with SDS resulted in 50% reduction in the electroosmotic mobility with 0.1% hydroxypropyl methyl cellulose (HPMC), while including 2% poly (N,N‐dimethylacrylamide) (PDMA) had no effect. These results will potentially contribute to the development of PMMA‐based microfluidic devices.  相似文献   

5.
Fused-silica capillaries were packed with Zirchrom-PBD stationary phase for application in CEC, nanoLC and pseudoelectrochromatography (PEC). Acido-basic properties of zirconia can be used to control the EOF even if the zirconia particles were coated by polybutadiene. As for native zirconia, the EOF is pH-dependent and the pI is close to pH 5. The mixed-mode pressure-voltage technique induced a modulation of the mobile-phase velocity as well as an electrophoretic migration of the solutes in order to improve the resolution of the separation. A significant increase of the flow appeared when both hydrodynamic and EOFs were in the same direction. But an important reduction of the electroosmotic velocity was observed when the hydrodynamic flow and EOF were opposed in Zirchrom-PBD columns. This behaviour has been observed at high or low pH on several columns. Separations of neutral and charged compounds have been performed with these columns in PEC mode.  相似文献   

6.
A theoretical model of the EOF and hydrodynamic flow in wide closed cylindrical capillaries, after the application of a stepwise voltage, is developed. Analytical expressions have been obtained as a sum of the solutions for the direct flow and backflow in both periodical and aperiodical regimes with arbitrary pulse/pulse or pulse/pause durations and amplitudes. The numerical analysis, performed for a few types of periodical and aperiodical regimes, shows the qualitative peculiarities of the liquid velocity profiles and its displacement for different numbers of pulses. The obtained results are compared with those obtained in the case of open capillaries. The possibility of the application of aperiodical stepwise regime for the investigation of electrophoresis is discussed.  相似文献   

7.
A theoretical model of the EOF established in a wide capillary after the application of a stepwise voltage has been developed. Both periodical and aperiodical flow regimes were studied with arbitrary pulse/pulse or pulse/pause durations and amplitudes. The numerical analysis performed for a few types of periodical regimes showed the peculiarities of the profiles of liquid velocity and its displacement both for the transition to the stationary regime and for the quasi-stationary periodical and aperiodical regimes.  相似文献   

8.
Investigations concerning the qualitative and quantitative determination of the organic wood preservative component N-cyclohexyl-diazeniumdioxide (HDO) in treated timber were carried out by means of direct thermal desorption-gas chromatography-mass spectrometry (DTD-GC-MS). It could be shown that the identification of HDO in treated pine sapwood (Pinus sylyestris L.) is relatively simple using this analytical technique. Quantification of this active ingredient can be carried out using the peak area of the specific mass fragment m/z 114. A calibration curve with a high correlation coefficient was obtained in the range from 40 to 550 mg HDO per kg timber. Furthermore it can be deduced that the results obtained are characterised by an excellent reproducibility with standard deviations ranging from 5 to 10% in general. For the chosen experimental set up a detection limit of 4 mg HDO per kg treated pine sapwood was calculated, although merely 20% of the active ingredient was desorbed.  相似文献   

9.
Hu J  Xie C  Tian R  He Z  Zou H 《Electrophoresis》2006,27(21):4266-4272
A hybrid silica monolithic stationary phase for RP CEC was prepared by in situ co-condensation of (3-mercaptopropyl)-trimethoxysilane (MPTMS), phenyltriethoxysilane (PTES), and tetraethoxysilane (TEOS) via a sol-gel process. The thiol groups on the surface of the stationary phase were oxidized to sulfonic acids by peroxytrifluoroacetic acid. The introduced sulfonic acid moieties on the monoliths were characterized by a strong and relatively stable EOF in a broad pH range from 2.35 to 7.0 in CEC. Aromatic acids and neutral compounds can be simultaneously separated in this column under cathodic EOF. The CEC column exhibited a typical RP chromatographic mechanism for neutral compounds due to the introduced phenyl groups.  相似文献   

10.
Immobilized liposome chromatography (ILC) has been proven to be a useful method for the study or rapid screening of drug-membrane interactions. To obtain an adequate liposomal membrane phase for ILC, unilamellar liposomes were immobilized in gel beads by avidin-biotin binding. The retardation of 15 basic drugs on the liposome column could be converted to membrane partitioning coefficients, K(LM). The effects of small or large unilamellar liposomes and multilamellar liposomes on the drug-membrane partitioning were compared. The K(LM) values for both small and large liposomes were similar, but higher than those for the multilamellar liposomes. The basic drugs showed stronger partitioning into negatively charged liposomes than into either neutral liposomes or positively charged liposomes. The membrane fluidity of the immobilized liposomes was modulated by incorporating cholesterol into the liposomal membranes, by changing the acyl chain length and degree of unsaturation of the phospholipids, and by changing the temperature for ILC runs. Our data show that K(LM) obtained using ILC correlated well with those reported by batch studies using free liposomes. It is concluded that negatively charged or cholesterol-containing large unilamellar liposomes are suitable models for the ILC analysis of drug-membrane interactions.  相似文献   

11.
E Wen  A S Rathore  C Horváth 《Electrophoresis》2001,22(17):3720-3727
A major impediment to enhancing the speed of separation in capillary electrochromatography (CEC) is the upper limit on the electroosmotic flow (EOF) velocity by the maximal zeta potential of the chromatographic surface. Here, a new approach to speeding up EOF, suggested by Yang and El Rassi (Electrophoresis 1999, 20,18-23), is examined critically. It entails the use of a tandem arrangement of a separating column and an auxiliary column, the sole function of which is to boost EOF velocity in the separating column and thus facilitate faster analysis by CEC. Based on the principle of conservation of mass and current and using experimental data obtained in a wide range of conditions, the flow velocities in the separating and auxiliary columns were evaluated. The results show that an equidiameter open tubular auxiliary column offers a greater enhancement of EOF velocity than a packed column. Nevertheless, within the scope of the experiments the enhancement of EOF velocity by as much as 50% by using open tubular auxiliary columns has been obtained.  相似文献   

12.
Several chemically bonded silicas with C18 groups were examined with respect to electroosmotic flow (EOF) velocities under CEC conditions. Stationary phases with low hydrophobic selectivity generally provided high EOFs. The stationary phases prepared by using octadecyltrichlorosilane showed greater EOF than those from octadecyldimethylchlorosilane. Restricted-access reversed-phase (RARP) packing materials having C18 groups inside the pores and silanols on the external surfaces showed higher EOF than monomeric C18 phases with similarly high hydrophobic selectivity. The RARP-type structure having silanols at the external surface seems to be effective for increasing EOF while maintaining the hydrophobic character of the solute binding sites.  相似文献   

13.
The existence of a cathodic EOF (electroosmotic flow) in the case of a porous graphitic carbon (PGC) partially packed column has been demonstrated. Then, the ability of PGC to afford electroosmosis has been brought to the fore with a fully PGC packed column. Experimental data have shown that PGC particles are negatively charged and their electrophoretic mobility has been evaluated. In order to investigate the conditions of existence of EOF different mobile phases have been tested. An EOF occurs when the conductivity of the PGC packed column is larger than the conductivity of an empty fused-silica capillary operating in the same conditions i.e. when the PGC participates in the electric conduction. Since the local electric fields in the two segments of the column are different, an evaluation of the electroosmotic mobility is not possible and the effect of the operational parameters such as the composition of the mobile phase (acetonitrile ratio and total ionic strength) has been studied in term of electroosmotic velocity V(eo).  相似文献   

14.
Rathore AS 《Electrophoresis》2002,23(22-23):3827-3846
This article reviews recent progress that has taken place in the past decade (1992-2002) in the areas of understanding of flow of ions, buffers, as well as neutral and charged sample components through open channels and porous media. Though, primarily dealing with open capillaries and packed columns that are often used in capillary electrochromatography (CEC), these fundamental concepts are applicable to the evolving area of separations on a microchip.  相似文献   

15.
Manipulation of the EOF is essential for achieving optimal separations by MEKC. In this paper, we present an extensive investigation of the effect of common experimental conditions on the EOF observed in a capillary coated with poly(diallyldimethylammonium chloride) (PDADMA) polyelectrolyte under MEKC conditions. It was found that highly reproducible cathodal EOF is achieved approximately at or just below the conditional CMC value of SDS in the electrolytes used. At concentrations of SDS greater than the CMC the EOF is independent of pH. The impact of common organic modifiers (ACN, methanol, urea, beta-CD and nonionic surfactant) on the EOF behavior in both a PDADMA-coated capillary and a bare silica capillary is compared. The suppressing effect of organic modifiers on the EOF is much stronger for coated capillary indicating that these compounds additionally reduce the negative charge density on the capillary surface due to alteration of the surfactant coating.  相似文献   

16.
A new way of regulation of electroosmotic flow (EOF) in capillary zone electrophoresis (CZE) by external electric field has been developed. A set of three high-voltage power supplies is used to form a radial electric field across the capillary wall. One power supply is applied in the usual way as a driving force of CZE and EOF to the ends of the inner capillary compartment dipped into the electrode vessels and filled with background electrolyte. Two power supplies are connected to the ends of the outer low-conductivity coating of the capillary which is formed by the dispersion of copolymer of aniline and p-phenylenediamine in polystyrene matrix. The difference between electric potentials on the outer capillary surface and inside the capillary determines the voltage of radial electric field across the capillary wall and affects the electrokinetic potential at the solid-liquid interface inside the capillary. The effect of magnitude and polarity of external radial electric field on the flow rate of EOF, on the migration times of charged analytes and on the separation efficiency and resolution of CZE separations of synthetic oligopeptides, diglycine, triglycine and octapeptide fragments of human insulin was evaluated. Through the EOF control by external electric field the dynamic effective length of the capillary was obtained and the speed of analysis and resolution of CZE separations of peptide analytes could be optimized.  相似文献   

17.
The performance of macro-porous particles in capillary electrochromatography is studied. Three reversed-phase stationary phases with pore diameters between 500 A and 4000 A have been tested for separation efficiency and mobile phase velocity. With these stationary phases, a large portion of the total flow appears to be through the pores of particles, thereby increasing the separation efficiency through a further decrease of the flow inhomogeneity and through enhancement of the mass transfer kinetics. The effects of pore size and mobile phase composition on the plate height and mobile phase velocity have been studied. With increasing buffer concentrations and larger pore diameters, higher mobile phase velocities and higher separation efficiencies have been obtained. Columns packed with 7 microns particles containing pores with a diameter of 4000 A generated up to 430,000 theoretical plates/m for retained compounds. Reduced plate heights as low as 0.34 have been observed, clearly demonstrating that a significant portion of the flow is through the pores. For the particles containing 4000 A pores no minimum was observed in the H-u plot up to linear velocities of 3.3 mm/s, suggesting that the separation efficiency is dominated by axial diffusion. On relatively long (72 cm) columns, efficiencies of up to 230,000 theoretical plates/column have been obtained under non-optimal running conditions. On short (8.3 cm) columns fast separations could be performed with approximately 15,000 theoretical plates generated in less than 30 s.  相似文献   

18.
Qin S  Zhou C  Zhu Y  Ren Z  Zhang L  Fu H  Zhang W 《色谱》2011,29(9):942-946
将表面分别被改性成C18和氨基的磁性纳米颗粒按照不同比例混合,制备成具有不同分离选择性的混合固定相,进一步采用动态磁涂覆的方法制备开管毛细管电色谱柱。通过考察这种色谱柱中不同种类固定相表面物理化学性质对电渗流的综合影响,从理论上说明了其电渗流的特征。分别在不同固定相配比及不同涂覆长度条件下进行实验,理论与实验结果相符,证实通过调节固定相配比或磁铁对数可以便捷地调节电渗流的大小。  相似文献   

19.
CZE has become widespread for the separation and analysis of biomolecules such as proteins and peptides, due to factors such as, the speed of the separations, low sample volume, and high resolution associated with the technique. However, the separation of biomolecules by CZE does present a significant challenge due to the electrostatic attraction and adsorption of cationic, or cation containing, biomolecules to the capillary surface. To that end numerous methods have been developed to passivate, or protect the surface, in order to prevent the adsorption of analytes. Yet, in the process of protecting the capillary surface, the potential for further modification of the EOF, a factor crucial to effective analyte resolution, is greatly diminished. In seeking to overcome this limitation we have explored the potential of incorporating a range of metal cations into a phospholipid bilayer capillary coating. It has previously been established that the inclusion of calcium into the separation buffer with a phospholipid coating will reverse the EOF in the capillary. Here, we present our investigation of a broader range of metal cations included in the separation buffer (Ca2+, Mg2+, Co2+, Ni2+, Sr2+, Ba2+, and Ce3+) revealing that the choice of metal cation can drastically influence the EOF, with observed values between ?3.80 × 10?4 and ?5.74 × 10?5 cm2/V·s.  相似文献   

20.
Mass transfer systems based on electrokinetic phenomena (i.e., capillary electrochromatography (CEC)) have shown practical potential in becoming powerful separation methods for the biotechnology and pharmaceutical industries. A mathematical model has been constructed and solved to describe quantitatively the profiles of the electrostatic potential, pressure, and velocity of the electroosmotic flow (EOF) in charged cylindrical capillaries and in capillary columns packed with charged particles. The results obtained from model simulations (i) provide significant physical insight and understanding with regard to the velocity profile of the EOF in capillary columns packed with charged porous particles which represent systems employed in CEC, (ii) provide the physical explanation for the experimental results which indicate that the velocity of the EOF in capillary columns packed with charged porous particles is a very weak function (it is almost independent) of the diameter of the particles, and (iii) indicate that the intraparticle velocity, nu(p,i), of the EOF can be greater than zero. The intraparticle Peclet number, Pe(int rap), for lysozyme was found to be greater than unity and this intraparticle convective mass transfer mechanism could contribute significantly, if the appropriate chemistry is employed in the mobile liquid phase and in the charged porous particles, in (a) decreasing the intraparticle mass transfer resistance, (b) decreasing the dispersive mass transfer effects, and (c) increasing the intraparticle mass transfer rates so that high column efficiency and resolution can be obtained. Furthermore, the results from model simulations indicate that for a given operationally permissible value of the applied electric potential difference per unit length, Ex, high values for the average velocity of the EOF can be obtained if (1) the zeta potential, zeta(p), at the surface of the particles packed in the column has a large negative magnitude, (2) the value of the viscosity, mu, of the mobile liquid phase is low, (3) the magnitude of the dielectric constant, epsilon, of the mobile liquid phase is reasonably large, and (4) the combination of the values of the concentration, C(infinity), of the electrolyte and of the dielectric constant, epsilon, provide a thin double layer. The theoretical results for the velocity of the EOF obtained from the solution of the model presented in this work were compared with the experimental values of the velocity of the EOF obtained from a fused-silica column packed with charged porous silica C8 particles. Systems with four different particle diameters and three different concentrations of the electrolyte were considered, and the magnitude of the electric field was varied widely. The agreement between theory and experiment was found to be good.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号